File size: 18,543 Bytes
01b12c9
f0bc6d4
 
 
 
 
 
 
 
 
 
584299d
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584299d
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584299d
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584299d
cf2bd9d
 
 
 
f0bc6d4
 
 
 
 
cf2bd9d
f0bc6d4
8f98272
f0bc6d4
584299d
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584299d
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e12e44
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584299d
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f98272
 
f0bc6d4
 
 
01b12c9
f0bc6d4
01b12c9
f0bc6d4
 
 
 
 
01b12c9
f0bc6d4
 
 
 
 
 
 
 
 
 
 
 
01b12c9
f0bc6d4
 
cf2bd9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
{
  "cells": [
    {
      "cell_type": "raw",
      "metadata": {
        "id": "uIxcPJeuGGAF"
      },
      "source": [
        "---\n",
        "title: Newsletter Helper\n",
        "description: Follow the instructions on screen\n",
        "show-code: false\n",
        "params:\n",
        "    feed_keywords:\n",
        "        label: Sources\n",
        "        input: select\n",
        "        value: ['a16z.com/',\n",
        "             'sequoiacap.com/article',\n",
        "             'zettavp.com/playbook/',\n",
        "             'atomico.com/insights/',\n",
        "             'nt-z.ro/',\n",
        "             'accel.com/noteworthy',\n",
        "             'felicis.com/',\n",
        "             'scalevp.com/blog/',\n",
        "             'redpoint.com/start/',\n",
        "             '83north.com/',\n",
        "             'bvp.com/atlas/']\n",
        "        choices: ['a16z.com/',\n",
        "             'sequoiacap.com/article',\n",
        "             'zettavp.com/playbook/',\n",
        "             'atomico.com/insights/',\n",
        "             'nt-z.ro/',\n",
        "             'accel.com/noteworthy',\n",
        "             'felicis.com/',\n",
        "             'scalevp.com/blog/',\n",
        "             'redpoint.com/start/',\n",
        "             '83north.com/',\n",
        "             'bvp.com/atlas/']\n",
        "        multi: True\n",
        "    feed_age:\n",
        "        label: How old?\n",
        "        input: select\n",
        "        value: '7 days'\n",
        "        choices: ['7 days', '14 days', '30 days']\n",
        "        multi: False\n",
        "---"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "pfJ5NpqjCT1U"
      },
      "outputs": [],
      "source": [
        "feed_keywords = ['a16z.com/',\n",
        "             'sequoiacap.com/article',\n",
        "             'zettavp.com/playbook/',\n",
        "             'atomico.com/insights/',\n",
        "             'nt-z.ro/',\n",
        "             'accel.com/noteworthy',\n",
        "             'felicis.com/',\n",
        "             'scalevp.com/blog/',\n",
        "             'redpoint.com/start/',\n",
        "             '83north.com/',\n",
        "             'bvp.com/atlas/']\n",
        "feed_age = '28 days'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "mEOS4asyGGAI"
      },
      "outputs": [],
      "source": [
        "keywords = [\"Electro mobility\",\n",
        "            \"Batteries \",\n",
        "            \"Battery Management systems\",\n",
        "            \"Lidars\",\n",
        "            \"RADARS\",\n",
        "            \"AI\",\n",
        "            \"Industrial AI\",\n",
        "            \"Transportation\",\n",
        "            \"Mobility\",\n",
        "            \"Climate Tech\",\n",
        "            \"Sustainable grid\",\n",
        "            \"Sensor fusion\",\n",
        "            \"Computer vision\",\n",
        "            \"Data Analytics\",\n",
        "            \"Digital Twins\",\n",
        "            \"Automotive Cybersecurity\",\n",
        "            \"Logistics\",\n",
        "            \"Ports\",\n",
        "            \"Construction sites\",\n",
        "            \"Mines\",\n",
        "            \"Quarries\",\n",
        "            \"Trucks\",\n",
        "            \"Power train\",\n",
        "            \"Software defined vehicle\"]\n",
        "\n",
        "feed = \"https://www.rssground.com/p/Newsletter\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "id": "WMswc6FCGR9T"
      },
      "outputs": [],
      "source": [
        "#!pip install keybert\n",
        "#!pip install feedparser\n",
        "#!pip install keyphrase_vectorizers\n",
        "#!pip install sentence-transformers"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "Ig5nSCbI6yuL"
      },
      "outputs": [],
      "source": [
        "from keybert import KeyBERT\n",
        "import pandas as pd\n",
        "from keyphrase_vectorizers import KeyphraseCountVectorizer\n",
        "from sentence_transformers import SentenceTransformer\n",
        "import numpy as np\n",
        "from sklearn.metrics.pairwise import cosine_similarity\n",
        "\n",
        "import feedparser\n",
        "import requests\n",
        "from bs4 import BeautifulSoup\n",
        "from openpyxl import Workbook\n",
        "import time\n",
        "import pickle\n",
        "import os\n",
        "from tqdm import tqdm\n",
        "from concurrent.futures import ThreadPoolExecutor\n",
        "#from functools import lru_cache\n",
        "\n",
        "# Define function to extract keywords from the HTML body using the YAKE keyword extractor\n",
        "def extract_keyphrases(text, kw_model, vectorizer, embedding_model):\n",
        "    kph = [kw for kw, score in kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 2), stop_words='english', vectorizer=vectorizer, use_mmr=True)]\n",
        "    keyphrase_embeddings = embedding_model.encode(kph)\n",
        "    return kph, keyphrase_embeddings\n",
        "\n",
        "def get_similarity_scores(keyword_embeddings, keyphrase_embeddings):\n",
        "    similarity_scores = cosine_similarity(keyphrase_embeddings, keyword_embeddings).max(axis=1).astype(str).tolist()\n",
        "    similarity_max = cosine_similarity(keyphrase_embeddings, keyword_embeddings).flatten().max().astype(str)\n",
        "    return similarity_scores, similarity_max\n",
        "\n",
        "# Define function to get the redirected URL (if any) for a given URL\n",
        "def get_redirected_url(url_record, headers, expected_codes=(301, 302, 303, 307), timeout=60):\n",
        "  try:\n",
        "    res = requests.head(url_record['url'], headers=headers, timeout=timeout)\n",
        "    if res.status_code in expected_codes:\n",
        "      url_record['url'] = res.headers['location']\n",
        "    elif res.status_code == 200:\n",
        "      url_record['url'] = url_record['url']\n",
        "    else:\n",
        "      print(f\"Retrieving {url_record['url']} failed: Expected {expected_codes}, but received {res.status_code}: {res.reason}\")\n",
        "  except requests.exceptions.Timeout:\n",
        "    print(f\"\\nRequest timed out for {url_record['url']}\")\n",
        "    return url_record\n",
        "  except:\n",
        "    return url_record\n",
        "\n",
        "  return url_record\n",
        "\n",
        "# Define function to get the HTML body of a given URL\n",
        "def get_html_body(url, headers):\n",
        "    try:\n",
        "        response = requests.get(url, headers=headers, timeout=10)\n",
        "        html = response.content\n",
        "        soup = BeautifulSoup(html, 'html.parser')\n",
        "        return soup.body.get_text()\n",
        "    except:\n",
        "        return ''\n",
        "\n",
        "# Define function to write data to the Excel sheet\n",
        "def write_data_to_excel(url_dict, filename):\n",
        "    # Create a new Excel workbook and worksheet\n",
        "    workbook = Workbook()\n",
        "    worksheet = workbook.active\n",
        "    worksheet.title = 'RSS Feeds'\n",
        "\n",
        "    # Write the headers for the Excel sheet\n",
        "    worksheet.cell(row=1, column=1, value='Feed Name')\n",
        "    worksheet.cell(row=1, column=2, value='URL')\n",
        "    worksheet.cell(row=1, column=3, value='Updated')\n",
        "    worksheet.cell(row=1, column=4, value='Keyphrases')\n",
        "    worksheet.cell(row=1, column=5, value='Similarity to supplied keywords')\n",
        "    worksheet.cell(row=1, column=6, value='Similarity (max)')\n",
        "    worksheet.cell(row=1, column=7, value='HTML Body')\n",
        "\n",
        "    # Loop over the unique URLs and write them to the Excel sheet\n",
        "    row_num = 2\n",
        "    for url, data in url_dict.items():\n",
        "        worksheet.cell(row=row_num, column=1, value=data['feed_name'])\n",
        "        worksheet.cell(row=row_num, column=2, value=url)\n",
        "        worksheet.cell(row=row_num, column=3, value=data['updated'])\n",
        "        worksheet.cell(row=row_num, column=4, value=data['keyphrases'])\n",
        "        worksheet.cell(row=row_num, column=5, value=data['similarity'])\n",
        "        worksheet.cell(row=row_num, column=6, value=data['similarity_max'])\n",
        "        worksheet.cell(row=row_num, column=7, value=data['html_body'])\n",
        "\n",
        "        row_num += 1\n",
        "\n",
        "    worksheet.freeze_panes = 'A2'\n",
        "\n",
        "    # Set the number format for column A, except the first row\n",
        "    for row in worksheet.iter_rows(min_row=2, min_col=3, max_col=3):\n",
        "        for cell in row:\n",
        "            cell.number_format = 'mm/dd/yyyy hh:mm:ss'\n",
        "\n",
        "    # Save the Excel workbook\n",
        "    workbook.save(filename)\n",
        "\n",
        "    # Print confirmation message\n",
        "    #print(f'RSS output written to excel sheet: {filename}')\n",
        "\n",
        "def remaining_entries_from_dict(filename, dictionary):\n",
        "    pickle_data = {}\n",
        "    if os.path.exists(filename):\n",
        "        with open(filename, 'rb') as f:\n",
        "            pickle_data = pickle.load(f)\n",
        "    return list(set(dictionary.keys()) - set(pickle_data.keys()))\n",
        "\n",
        "def process_url(url):\n",
        "    global url_dict\n",
        "    \n",
        "    #body = get_html_body(url, headers)\n",
        "    #kph,keyphrase_embeddings = extract_keyphrases(body, kw_model, vectorizer, embedding_model)\n",
        "    #similarity, similarity_max = get_similarity_scores(keyword_embeddings, keyphrase_embeddings)\n",
        "\n",
        "    #url_dict[url]['keyphrases'] = ', '.join(kph)\n",
        "    #url_dict[url]['similarity'] = ', '.join(similarity)\n",
        "    #url_dict[url]['similarity_max'] = similarity_max\n",
        "    #url_dict[url]['html_body'] = body\n",
        "    \n",
        "    url_dict[url]['keyphrases'] = ''\n",
        "    url_dict[url]['similarity'] = ''\n",
        "    url_dict[url]['similarity_max'] = ''\n",
        "    url_dict[url]['html_body'] = \"Skipping this part, to speed up the process\"\n",
        "\n",
        "    # Store temporary results to disk\n",
        "    #with open(\"retrieved_urls.pkl\", 'wb') as f:\n",
        "    #    pickle.dump(url_dict, f)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "5cHnJQDSDy1Q"
      },
      "outputs": [],
      "source": [
        "import pprint\n",
        "from concurrent.futures import ThreadPoolExecutor, as_completed\n",
        "from tqdm import tqdm\n",
        "from datetime import datetime\n",
        "import nltk\n",
        "\n",
        "\n",
        "# Initialize the SentenceTransformer model\n",
        "kw_model = KeyBERT('distilbert-base-nli-mean-tokens')\n",
        "vectorizer = KeyphraseCountVectorizer()\n",
        "embedding_model = SentenceTransformer('distilbert-base-nli-mean-tokens')\n",
        "nltk.download('stopwords', quiet=True)\n",
        "\n",
        "# Initialize variables\n",
        "headers = {\n",
        "    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'\n",
        "}\n",
        "keyword_embeddings = embedding_model.encode(keywords) # Encode keywords using the embedding model\n",
        "\n",
        "def filter_strings(lst1, lst2):\n",
        "    \"\"\"\n",
        "    Filters the list `lst2` and returns only the elements that have any of the elements of `lst1` as a substring.\n",
        "  \n",
        "    Args:\n",
        "        lst1 (list): The list of substrings to match against.\n",
        "        lst2 (list): The list of strings to filter.\n",
        "\n",
        "    Returns:\n",
        "        list: A new list containing the filtered elements from `lst2`.\n",
        "\n",
        "    Examples:\n",
        "        >>> lst1 = ['apple', 'banana', 'orange']\n",
        "        >>> lst2 = ['apple pie', 'banana bread', 'cherry pie', 'orange juice']\n",
        "        >>> filter_strings(lst1, lst2)\n",
        "        ['apple pie', 'banana bread', 'orange juice']\n",
        "    \"\"\"\n",
        "    filtered_lst2 = [s for s in lst2 if any(substring in s for substring in lst1)]\n",
        "    return filtered_lst2\n",
        "\n",
        "\n",
        "def read_feeds(rss_feed, how_old):\n",
        "    global urls\n",
        "    import sys\n",
        "    import io\n",
        "    import re\n",
        "    from datetime import datetime, timedelta\n",
        "    import pytz\n",
        "\n",
        "    old_stdout = sys.stdout\n",
        "    sys.stdout = mystdout = io.StringIO()\n",
        "\n",
        "    # Loop over the RSS feeds and keywords\n",
        "    urls_temp = []\n",
        "    urls = []\n",
        "\n",
        "    # Get the desired timezone\n",
        "    timezone = pytz.timezone('Europe/Stockholm')  # Replace 'Your_Timezone_Here' with the desired timezone\n",
        "\n",
        "    # Calculate the age with timezone\n",
        "    feed_item_age_minimum = datetime.now(timezone) - timedelta(days=int(how_old.split()[0]))\n",
        "\n",
        "    feed = feedparser.parse(rss_feed)\n",
        "    for entry in tqdm(feed.entries, total=len(feed.entries),  file=sys.stdout, bar_format='\\tReading feed entries: {n}/{total} ({percentage:.0f}%), time elapsed: {elapsed}'):\n",
        "        soup = BeautifulSoup(entry.summary, 'html.parser')\n",
        "        updated = datetime.strptime(entry.published, '%a, %d %b %Y %H:%M:%S %z')\n",
        "        if re.search(r'@([^ ]+)', entry.title):\n",
        "            feed_name = re.search(r'@([^ ]+)', entry.title).group(1)\n",
        "        else:\n",
        "            feed_name = ''\n",
        "        if updated > feed_item_age_minimum:\n",
        "            urls_temp.extend([{'url': link.get('href'), 'updated': updated, 'feed_name': feed_name} for link in soup.find_all('a')])\n",
        "\n",
        "    with ThreadPoolExecutor(max_workers=4) as executor:\n",
        "        futures = [executor.submit(get_redirected_url, url, headers) for url in urls_temp]\n",
        "        for future in tqdm(as_completed(futures), total=len(futures), file=sys.stdout, bar_format='Checking URLs: {n}/{total} ({percentage:.0f}%), time elapsed: {elapsed}'):\n",
        "            urls.append(future.result())\n",
        "\n",
        "    sys.stdout = old_stdout\n",
        "    return mystdout.getvalue()\n",
        "\n",
        "def read_process_urls():\n",
        "    import sys\n",
        "    import io\n",
        "    from datetime import datetime, timedelta\n",
        "    old_stdout = sys.stdout\n",
        "    sys.stdout = mystdout = io.StringIO()\n",
        "\n",
        "    global urls\n",
        "    global url_dict\n",
        "\n",
        "    #print(f\"Urls: {urls}\")\n",
        "    url_dict = {}\n",
        "    for item in filter_strings(feed_keywords, urls):\n",
        "        feed_name = item['feed_name']\n",
        "        updated = item['updated']\n",
        "        url = item['url']\n",
        "\n",
        "        import pprint\n",
        "        pprint.pprint(url)\n",
        "        if url not in url_dict.keys():\n",
        "            url_dict[url] = {'updated': updated, 'feed_name': feed_name}\n",
        "        else:\n",
        "            if url_dict[url]['updated'] > updated:\n",
        "                url_dict[url]['updated'] = updated\n",
        "\n",
        "    start_parallel_loop_time = time.time()\n",
        "    results = []\n",
        "    with ThreadPoolExecutor(max_workers=4) as executor:\n",
        "        futures = [executor.submit(process_url, url) for url in url_dict.keys()]#remaining_entries_from_dict(\"retrieved_urls.pkl\", url_dict)]\n",
        "        for future in tqdm(as_completed(futures), total=len(futures),  file=sys.stdout, bar_format='Reading URLs: {n}/{total} ({percentage:.0f}%), time elapsed: {elapsed}'):\n",
        "            results.append(future.result())\n",
        "    #print(f\"Parallel URL processing: {time.time() - start_parallel_loop_time:.3f} seconds\")\n",
        "    print(f\"Total links processed: {len(url_dict.keys())}\")\n",
        "\n",
        "    #with open(\"retrieved_urls.pkl\", 'wb') as f:\n",
        "    #    pickle.dump(url_dict, f)\n",
        "\n",
        "    # Write dataset to the Excel sheet\n",
        "    write_data_to_excel(url_dict, 'newsletter_results.xlsx')\n",
        "\n",
        "    sys.stdout = old_stdout\n",
        "    return mystdout.getvalue()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "id": "FNR1jfm-jsgb"
      },
      "outputs": [],
      "source": [
        "from ipywidgets import HTML\n",
        "\n",
        "read_feeds(feed, feed_age)\n",
        "display(HTML(f\"Total links examined: {len(urls)}\"))\n",
        "\n",
        "read_process_urls()\n",
        "display(HTML(f\"Relevant links found: {len(url_dict.keys())}\"))\n",
        "display(HTML(f\"------------------------------\"))\n",
        "\n",
        "for url in url_dict.keys():\n",
        "    #print(url)\n",
        "    display(HTML(f\"{url}\"))\n"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "provenance": []
    },
    "gpuClass": "standard",
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.9.7"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}