File size: 56,619 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 |
import datetime
import dateutil.tz
import dateutil.rrule
import functools
import numpy as np
import pytest
import matplotlib as mpl
from matplotlib import rc_context, style
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import image_comparison
import matplotlib.ticker as mticker
def test_date_numpyx():
# test that numpy dates work properly...
base = datetime.datetime(2017, 1, 1)
time = [base + datetime.timedelta(days=x) for x in range(0, 3)]
timenp = np.array(time, dtype='datetime64[ns]')
data = np.array([0., 2., 1.])
fig = plt.figure(figsize=(10, 2))
ax = fig.add_subplot(1, 1, 1)
h, = ax.plot(time, data)
hnp, = ax.plot(timenp, data)
np.testing.assert_equal(h.get_xdata(orig=False), hnp.get_xdata(orig=False))
fig = plt.figure(figsize=(10, 2))
ax = fig.add_subplot(1, 1, 1)
h, = ax.plot(data, time)
hnp, = ax.plot(data, timenp)
np.testing.assert_equal(h.get_ydata(orig=False), hnp.get_ydata(orig=False))
@pytest.mark.parametrize('t0', [datetime.datetime(2017, 1, 1, 0, 1, 1),
[datetime.datetime(2017, 1, 1, 0, 1, 1),
datetime.datetime(2017, 1, 1, 1, 1, 1)],
[[datetime.datetime(2017, 1, 1, 0, 1, 1),
datetime.datetime(2017, 1, 1, 1, 1, 1)],
[datetime.datetime(2017, 1, 1, 2, 1, 1),
datetime.datetime(2017, 1, 1, 3, 1, 1)]]])
@pytest.mark.parametrize('dtype', ['datetime64[s]',
'datetime64[us]',
'datetime64[ms]',
'datetime64[ns]'])
def test_date_date2num_numpy(t0, dtype):
time = mdates.date2num(t0)
tnp = np.array(t0, dtype=dtype)
nptime = mdates.date2num(tnp)
np.testing.assert_equal(time, nptime)
@pytest.mark.parametrize('dtype', ['datetime64[s]',
'datetime64[us]',
'datetime64[ms]',
'datetime64[ns]'])
def test_date2num_NaT(dtype):
t0 = datetime.datetime(2017, 1, 1, 0, 1, 1)
tmpl = [mdates.date2num(t0), np.nan]
tnp = np.array([t0, 'NaT'], dtype=dtype)
nptime = mdates.date2num(tnp)
np.testing.assert_array_equal(tmpl, nptime)
@pytest.mark.parametrize('units', ['s', 'ms', 'us', 'ns'])
def test_date2num_NaT_scalar(units):
tmpl = mdates.date2num(np.datetime64('NaT', units))
assert np.isnan(tmpl)
def test_date2num_masked():
# Without tzinfo
base = datetime.datetime(2022, 12, 15)
dates = np.ma.array([base + datetime.timedelta(days=(2 * i))
for i in range(7)], mask=[0, 1, 1, 0, 0, 0, 1])
npdates = mdates.date2num(dates)
np.testing.assert_array_equal(np.ma.getmask(npdates),
(False, True, True, False, False, False,
True))
# With tzinfo
base = datetime.datetime(2022, 12, 15, tzinfo=mdates.UTC)
dates = np.ma.array([base + datetime.timedelta(days=(2 * i))
for i in range(7)], mask=[0, 1, 1, 0, 0, 0, 1])
npdates = mdates.date2num(dates)
np.testing.assert_array_equal(np.ma.getmask(npdates),
(False, True, True, False, False, False,
True))
def test_date_empty():
# make sure we do the right thing when told to plot dates even
# if no date data has been presented, cf
# http://sourceforge.net/tracker/?func=detail&aid=2850075&group_id=80706&atid=560720
fig, ax = plt.subplots()
ax.xaxis_date()
fig.draw_without_rendering()
np.testing.assert_allclose(ax.get_xlim(),
[mdates.date2num(np.datetime64('1970-01-01')),
mdates.date2num(np.datetime64('1970-01-02'))])
mdates._reset_epoch_test_example()
mdates.set_epoch('0000-12-31')
fig, ax = plt.subplots()
ax.xaxis_date()
fig.draw_without_rendering()
np.testing.assert_allclose(ax.get_xlim(),
[mdates.date2num(np.datetime64('1970-01-01')),
mdates.date2num(np.datetime64('1970-01-02'))])
mdates._reset_epoch_test_example()
def test_date_not_empty():
fig = plt.figure()
ax = fig.add_subplot()
ax.plot([50, 70], [1, 2])
ax.xaxis.axis_date()
np.testing.assert_allclose(ax.get_xlim(), [50, 70])
def test_axhline():
# make sure that axhline doesn't set the xlimits...
fig, ax = plt.subplots()
ax.axhline(1.5)
ax.plot([np.datetime64('2016-01-01'), np.datetime64('2016-01-02')], [1, 2])
np.testing.assert_allclose(ax.get_xlim(),
[mdates.date2num(np.datetime64('2016-01-01')),
mdates.date2num(np.datetime64('2016-01-02'))])
mdates._reset_epoch_test_example()
mdates.set_epoch('0000-12-31')
fig, ax = plt.subplots()
ax.axhline(1.5)
ax.plot([np.datetime64('2016-01-01'), np.datetime64('2016-01-02')], [1, 2])
np.testing.assert_allclose(ax.get_xlim(),
[mdates.date2num(np.datetime64('2016-01-01')),
mdates.date2num(np.datetime64('2016-01-02'))])
mdates._reset_epoch_test_example()
@image_comparison(['date_axhspan.png'])
def test_date_axhspan():
# test axhspan with date inputs
t0 = datetime.datetime(2009, 1, 20)
tf = datetime.datetime(2009, 1, 21)
fig, ax = plt.subplots()
ax.axhspan(t0, tf, facecolor="blue", alpha=0.25)
ax.set_ylim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
fig.subplots_adjust(left=0.25)
@image_comparison(['date_axvspan.png'])
def test_date_axvspan():
# test axvspan with date inputs
t0 = datetime.datetime(2000, 1, 20)
tf = datetime.datetime(2010, 1, 21)
fig, ax = plt.subplots()
ax.axvspan(t0, tf, facecolor="blue", alpha=0.25)
ax.set_xlim(t0 - datetime.timedelta(days=720),
tf + datetime.timedelta(days=720))
fig.autofmt_xdate()
@image_comparison(['date_axhline.png'])
def test_date_axhline():
# test axhline with date inputs
t0 = datetime.datetime(2009, 1, 20)
tf = datetime.datetime(2009, 1, 31)
fig, ax = plt.subplots()
ax.axhline(t0, color="blue", lw=3)
ax.set_ylim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
fig.subplots_adjust(left=0.25)
@image_comparison(['date_axvline.png'])
def test_date_axvline():
# test axvline with date inputs
t0 = datetime.datetime(2000, 1, 20)
tf = datetime.datetime(2000, 1, 21)
fig, ax = plt.subplots()
ax.axvline(t0, color="red", lw=3)
ax.set_xlim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
fig.autofmt_xdate()
def test_too_many_date_ticks(caplog):
# Attempt to test SF 2715172, see
# https://sourceforge.net/tracker/?func=detail&aid=2715172&group_id=80706&atid=560720
# setting equal datetimes triggers and expander call in
# transforms.nonsingular which results in too many ticks in the
# DayLocator. This should emit a log at WARNING level.
caplog.set_level("WARNING")
t0 = datetime.datetime(2000, 1, 20)
tf = datetime.datetime(2000, 1, 20)
fig, ax = plt.subplots()
with pytest.warns(UserWarning) as rec:
ax.set_xlim((t0, tf), auto=True)
assert len(rec) == 1
assert ('Attempting to set identical low and high xlims'
in str(rec[0].message))
ax.plot([], [])
ax.xaxis.set_major_locator(mdates.DayLocator())
v = ax.xaxis.get_major_locator()()
assert len(v) > 1000
# The warning is emitted multiple times because the major locator is also
# called both when placing the minor ticks (for overstriking detection) and
# during tick label positioning.
assert caplog.records and all(
record.name == "matplotlib.ticker" and record.levelname == "WARNING"
for record in caplog.records)
assert len(caplog.records) > 0
def _new_epoch_decorator(thefunc):
@functools.wraps(thefunc)
def wrapper():
mdates._reset_epoch_test_example()
mdates.set_epoch('2000-01-01')
thefunc()
mdates._reset_epoch_test_example()
return wrapper
@image_comparison(['RRuleLocator_bounds.png'])
def test_RRuleLocator():
import matplotlib.testing.jpl_units as units
units.register()
# This will cause the RRuleLocator to go out of bounds when it tries
# to add padding to the limits, so we make sure it caps at the correct
# boundary values.
t0 = datetime.datetime(1000, 1, 1)
tf = datetime.datetime(6000, 1, 1)
fig = plt.figure()
ax = plt.subplot()
ax.set_autoscale_on(True)
ax.plot([t0, tf], [0.0, 1.0], marker='o')
rrule = mdates.rrulewrapper(dateutil.rrule.YEARLY, interval=500)
locator = mdates.RRuleLocator(rrule)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(mdates.AutoDateFormatter(locator))
ax.autoscale_view()
fig.autofmt_xdate()
def test_RRuleLocator_dayrange():
loc = mdates.DayLocator()
x1 = datetime.datetime(year=1, month=1, day=1, tzinfo=mdates.UTC)
y1 = datetime.datetime(year=1, month=1, day=16, tzinfo=mdates.UTC)
loc.tick_values(x1, y1)
# On success, no overflow error shall be thrown
def test_RRuleLocator_close_minmax():
# if d1 and d2 are very close together, rrule cannot create
# reasonable tick intervals; ensure that this is handled properly
rrule = mdates.rrulewrapper(dateutil.rrule.SECONDLY, interval=5)
loc = mdates.RRuleLocator(rrule)
d1 = datetime.datetime(year=2020, month=1, day=1)
d2 = datetime.datetime(year=2020, month=1, day=1, microsecond=1)
expected = ['2020-01-01 00:00:00+00:00',
'2020-01-01 00:00:00.000001+00:00']
assert list(map(str, mdates.num2date(loc.tick_values(d1, d2)))) == expected
@image_comparison(['DateFormatter_fractionalSeconds.png'])
def test_DateFormatter():
import matplotlib.testing.jpl_units as units
units.register()
# Lets make sure that DateFormatter will allow us to have tick marks
# at intervals of fractional seconds.
t0 = datetime.datetime(2001, 1, 1, 0, 0, 0)
tf = datetime.datetime(2001, 1, 1, 0, 0, 1)
fig = plt.figure()
ax = plt.subplot()
ax.set_autoscale_on(True)
ax.plot([t0, tf], [0.0, 1.0], marker='o')
# rrule = mpldates.rrulewrapper( dateutil.rrule.YEARLY, interval=500 )
# locator = mpldates.RRuleLocator( rrule )
# ax.xaxis.set_major_locator( locator )
# ax.xaxis.set_major_formatter( mpldates.AutoDateFormatter(locator) )
ax.autoscale_view()
fig.autofmt_xdate()
def test_locator_set_formatter():
"""
Test if setting the locator only will update the AutoDateFormatter to use
the new locator.
"""
plt.rcParams["date.autoformatter.minute"] = "%d %H:%M"
t = [datetime.datetime(2018, 9, 30, 8, 0),
datetime.datetime(2018, 9, 30, 8, 59),
datetime.datetime(2018, 9, 30, 10, 30)]
x = [2, 3, 1]
fig, ax = plt.subplots()
ax.plot(t, x)
ax.xaxis.set_major_locator(mdates.MinuteLocator((0, 30)))
fig.canvas.draw()
ticklabels = [tl.get_text() for tl in ax.get_xticklabels()]
expected = ['30 08:00', '30 08:30', '30 09:00',
'30 09:30', '30 10:00', '30 10:30']
assert ticklabels == expected
ax.xaxis.set_major_locator(mticker.NullLocator())
ax.xaxis.set_minor_locator(mdates.MinuteLocator((5, 55)))
decoy_loc = mdates.MinuteLocator((12, 27))
ax.xaxis.set_minor_formatter(mdates.AutoDateFormatter(decoy_loc))
ax.xaxis.set_minor_locator(mdates.MinuteLocator((15, 45)))
fig.canvas.draw()
ticklabels = [tl.get_text() for tl in ax.get_xticklabels(which="minor")]
expected = ['30 08:15', '30 08:45', '30 09:15', '30 09:45', '30 10:15']
assert ticklabels == expected
def test_date_formatter_callable():
class _Locator:
def _get_unit(self): return -11
def callable_formatting_function(dates, _):
return [dt.strftime('%d-%m//%Y') for dt in dates]
formatter = mdates.AutoDateFormatter(_Locator())
formatter.scaled[-10] = callable_formatting_function
assert formatter([datetime.datetime(2014, 12, 25)]) == ['25-12//2014']
@pytest.mark.parametrize('delta, expected', [
(datetime.timedelta(weeks=52 * 200),
[r'$\mathdefault{%d}$' % year for year in range(1990, 2171, 20)]),
(datetime.timedelta(days=30),
[r'$\mathdefault{1990{-}01{-}%02d}$' % day for day in range(1, 32, 3)]),
(datetime.timedelta(hours=20),
[r'$\mathdefault{01{-}01\;%02d}$' % hour for hour in range(0, 21, 2)]),
(datetime.timedelta(minutes=10),
[r'$\mathdefault{01\;00{:}%02d}$' % minu for minu in range(0, 11)]),
])
def test_date_formatter_usetex(delta, expected):
style.use("default")
d1 = datetime.datetime(1990, 1, 1)
d2 = d1 + delta
locator = mdates.AutoDateLocator(interval_multiples=False)
locator.create_dummy_axis()
locator.axis.set_view_interval(mdates.date2num(d1), mdates.date2num(d2))
formatter = mdates.AutoDateFormatter(locator, usetex=True)
assert [formatter(loc) for loc in locator()] == expected
def test_drange():
"""
This test should check if drange works as expected, and if all the
rounding errors are fixed
"""
start = datetime.datetime(2011, 1, 1, tzinfo=mdates.UTC)
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
delta = datetime.timedelta(hours=1)
# We expect 24 values in drange(start, end, delta), because drange returns
# dates from an half open interval [start, end)
assert len(mdates.drange(start, end, delta)) == 24
# Same if interval ends slightly earlier
end = end - datetime.timedelta(microseconds=1)
assert len(mdates.drange(start, end, delta)) == 24
# if end is a little bit later, we expect the range to contain one element
# more
end = end + datetime.timedelta(microseconds=2)
assert len(mdates.drange(start, end, delta)) == 25
# reset end
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
# and tst drange with "complicated" floats:
# 4 hours = 1/6 day, this is an "dangerous" float
delta = datetime.timedelta(hours=4)
daterange = mdates.drange(start, end, delta)
assert len(daterange) == 6
assert mdates.num2date(daterange[-1]) == (end - delta)
@_new_epoch_decorator
def test_auto_date_locator():
def _create_auto_date_locator(date1, date2):
locator = mdates.AutoDateLocator(interval_multiples=False)
locator.create_dummy_axis()
locator.axis.set_view_interval(*mdates.date2num([date1, date2]))
return locator
d1 = datetime.datetime(1990, 1, 1)
results = ([datetime.timedelta(weeks=52 * 200),
['1990-01-01 00:00:00+00:00', '2010-01-01 00:00:00+00:00',
'2030-01-01 00:00:00+00:00', '2050-01-01 00:00:00+00:00',
'2070-01-01 00:00:00+00:00', '2090-01-01 00:00:00+00:00',
'2110-01-01 00:00:00+00:00', '2130-01-01 00:00:00+00:00',
'2150-01-01 00:00:00+00:00', '2170-01-01 00:00:00+00:00']
],
[datetime.timedelta(weeks=52),
['1990-01-01 00:00:00+00:00', '1990-02-01 00:00:00+00:00',
'1990-03-01 00:00:00+00:00', '1990-04-01 00:00:00+00:00',
'1990-05-01 00:00:00+00:00', '1990-06-01 00:00:00+00:00',
'1990-07-01 00:00:00+00:00', '1990-08-01 00:00:00+00:00',
'1990-09-01 00:00:00+00:00', '1990-10-01 00:00:00+00:00',
'1990-11-01 00:00:00+00:00', '1990-12-01 00:00:00+00:00']
],
[datetime.timedelta(days=141),
['1990-01-05 00:00:00+00:00', '1990-01-26 00:00:00+00:00',
'1990-02-16 00:00:00+00:00', '1990-03-09 00:00:00+00:00',
'1990-03-30 00:00:00+00:00', '1990-04-20 00:00:00+00:00',
'1990-05-11 00:00:00+00:00']
],
[datetime.timedelta(days=40),
['1990-01-03 00:00:00+00:00', '1990-01-10 00:00:00+00:00',
'1990-01-17 00:00:00+00:00', '1990-01-24 00:00:00+00:00',
'1990-01-31 00:00:00+00:00', '1990-02-07 00:00:00+00:00']
],
[datetime.timedelta(hours=40),
['1990-01-01 00:00:00+00:00', '1990-01-01 04:00:00+00:00',
'1990-01-01 08:00:00+00:00', '1990-01-01 12:00:00+00:00',
'1990-01-01 16:00:00+00:00', '1990-01-01 20:00:00+00:00',
'1990-01-02 00:00:00+00:00', '1990-01-02 04:00:00+00:00',
'1990-01-02 08:00:00+00:00', '1990-01-02 12:00:00+00:00',
'1990-01-02 16:00:00+00:00']
],
[datetime.timedelta(minutes=20),
['1990-01-01 00:00:00+00:00', '1990-01-01 00:05:00+00:00',
'1990-01-01 00:10:00+00:00', '1990-01-01 00:15:00+00:00',
'1990-01-01 00:20:00+00:00']
],
[datetime.timedelta(seconds=40),
['1990-01-01 00:00:00+00:00', '1990-01-01 00:00:05+00:00',
'1990-01-01 00:00:10+00:00', '1990-01-01 00:00:15+00:00',
'1990-01-01 00:00:20+00:00', '1990-01-01 00:00:25+00:00',
'1990-01-01 00:00:30+00:00', '1990-01-01 00:00:35+00:00',
'1990-01-01 00:00:40+00:00']
],
[datetime.timedelta(microseconds=1500),
['1989-12-31 23:59:59.999500+00:00',
'1990-01-01 00:00:00+00:00',
'1990-01-01 00:00:00.000500+00:00',
'1990-01-01 00:00:00.001000+00:00',
'1990-01-01 00:00:00.001500+00:00',
'1990-01-01 00:00:00.002000+00:00']
],
)
for t_delta, expected in results:
d2 = d1 + t_delta
locator = _create_auto_date_locator(d1, d2)
assert list(map(str, mdates.num2date(locator()))) == expected
locator = mdates.AutoDateLocator(interval_multiples=False)
assert locator.maxticks == {0: 11, 1: 12, 3: 11, 4: 12, 5: 11, 6: 11, 7: 8}
locator = mdates.AutoDateLocator(maxticks={dateutil.rrule.MONTHLY: 5})
assert locator.maxticks == {0: 11, 1: 5, 3: 11, 4: 12, 5: 11, 6: 11, 7: 8}
locator = mdates.AutoDateLocator(maxticks=5)
assert locator.maxticks == {0: 5, 1: 5, 3: 5, 4: 5, 5: 5, 6: 5, 7: 5}
@_new_epoch_decorator
def test_auto_date_locator_intmult():
def _create_auto_date_locator(date1, date2):
locator = mdates.AutoDateLocator(interval_multiples=True)
locator.create_dummy_axis()
locator.axis.set_view_interval(*mdates.date2num([date1, date2]))
return locator
results = ([datetime.timedelta(weeks=52 * 200),
['1980-01-01 00:00:00+00:00', '2000-01-01 00:00:00+00:00',
'2020-01-01 00:00:00+00:00', '2040-01-01 00:00:00+00:00',
'2060-01-01 00:00:00+00:00', '2080-01-01 00:00:00+00:00',
'2100-01-01 00:00:00+00:00', '2120-01-01 00:00:00+00:00',
'2140-01-01 00:00:00+00:00', '2160-01-01 00:00:00+00:00',
'2180-01-01 00:00:00+00:00', '2200-01-01 00:00:00+00:00']
],
[datetime.timedelta(weeks=52),
['1997-01-01 00:00:00+00:00', '1997-02-01 00:00:00+00:00',
'1997-03-01 00:00:00+00:00', '1997-04-01 00:00:00+00:00',
'1997-05-01 00:00:00+00:00', '1997-06-01 00:00:00+00:00',
'1997-07-01 00:00:00+00:00', '1997-08-01 00:00:00+00:00',
'1997-09-01 00:00:00+00:00', '1997-10-01 00:00:00+00:00',
'1997-11-01 00:00:00+00:00', '1997-12-01 00:00:00+00:00']
],
[datetime.timedelta(days=141),
['1997-01-01 00:00:00+00:00', '1997-01-15 00:00:00+00:00',
'1997-02-01 00:00:00+00:00', '1997-02-15 00:00:00+00:00',
'1997-03-01 00:00:00+00:00', '1997-03-15 00:00:00+00:00',
'1997-04-01 00:00:00+00:00', '1997-04-15 00:00:00+00:00',
'1997-05-01 00:00:00+00:00', '1997-05-15 00:00:00+00:00']
],
[datetime.timedelta(days=40),
['1997-01-01 00:00:00+00:00', '1997-01-05 00:00:00+00:00',
'1997-01-09 00:00:00+00:00', '1997-01-13 00:00:00+00:00',
'1997-01-17 00:00:00+00:00', '1997-01-21 00:00:00+00:00',
'1997-01-25 00:00:00+00:00', '1997-01-29 00:00:00+00:00',
'1997-02-01 00:00:00+00:00', '1997-02-05 00:00:00+00:00',
'1997-02-09 00:00:00+00:00']
],
[datetime.timedelta(hours=40),
['1997-01-01 00:00:00+00:00', '1997-01-01 04:00:00+00:00',
'1997-01-01 08:00:00+00:00', '1997-01-01 12:00:00+00:00',
'1997-01-01 16:00:00+00:00', '1997-01-01 20:00:00+00:00',
'1997-01-02 00:00:00+00:00', '1997-01-02 04:00:00+00:00',
'1997-01-02 08:00:00+00:00', '1997-01-02 12:00:00+00:00',
'1997-01-02 16:00:00+00:00']
],
[datetime.timedelta(minutes=20),
['1997-01-01 00:00:00+00:00', '1997-01-01 00:05:00+00:00',
'1997-01-01 00:10:00+00:00', '1997-01-01 00:15:00+00:00',
'1997-01-01 00:20:00+00:00']
],
[datetime.timedelta(seconds=40),
['1997-01-01 00:00:00+00:00', '1997-01-01 00:00:05+00:00',
'1997-01-01 00:00:10+00:00', '1997-01-01 00:00:15+00:00',
'1997-01-01 00:00:20+00:00', '1997-01-01 00:00:25+00:00',
'1997-01-01 00:00:30+00:00', '1997-01-01 00:00:35+00:00',
'1997-01-01 00:00:40+00:00']
],
[datetime.timedelta(microseconds=1500),
['1996-12-31 23:59:59.999500+00:00',
'1997-01-01 00:00:00+00:00',
'1997-01-01 00:00:00.000500+00:00',
'1997-01-01 00:00:00.001000+00:00',
'1997-01-01 00:00:00.001500+00:00',
'1997-01-01 00:00:00.002000+00:00']
],
)
d1 = datetime.datetime(1997, 1, 1)
for t_delta, expected in results:
d2 = d1 + t_delta
locator = _create_auto_date_locator(d1, d2)
assert list(map(str, mdates.num2date(locator()))) == expected
def test_concise_formatter_subsecond():
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(locator)
year_1996 = 9861.0
strings = formatter.format_ticks([
year_1996,
year_1996 + 500 / mdates.MUSECONDS_PER_DAY,
year_1996 + 900 / mdates.MUSECONDS_PER_DAY])
assert strings == ['00:00', '00.0005', '00.0009']
def test_concise_formatter():
def _create_auto_date_locator(date1, date2):
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(locator)
ax.yaxis.set_major_locator(locator)
ax.yaxis.set_major_formatter(formatter)
ax.set_ylim(date1, date2)
fig.canvas.draw()
sts = [st.get_text() for st in ax.get_yticklabels()]
return sts
d1 = datetime.datetime(1997, 1, 1)
results = ([datetime.timedelta(weeks=52 * 200),
[str(t) for t in range(1980, 2201, 20)]
],
[datetime.timedelta(weeks=52),
['1997', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Oct', 'Nov', 'Dec']
],
[datetime.timedelta(days=141),
['Jan', '15', 'Feb', '15', 'Mar', '15', 'Apr', '15',
'May', '15']
],
[datetime.timedelta(days=40),
['Jan', '05', '09', '13', '17', '21', '25', '29', 'Feb',
'05', '09']
],
[datetime.timedelta(hours=40),
['Jan-01', '04:00', '08:00', '12:00', '16:00', '20:00',
'Jan-02', '04:00', '08:00', '12:00', '16:00']
],
[datetime.timedelta(minutes=20),
['00:00', '00:05', '00:10', '00:15', '00:20']
],
[datetime.timedelta(seconds=40),
['00:00', '05', '10', '15', '20', '25', '30', '35', '40']
],
[datetime.timedelta(seconds=2),
['59.5', '00:00', '00.5', '01.0', '01.5', '02.0', '02.5']
],
)
for t_delta, expected in results:
d2 = d1 + t_delta
strings = _create_auto_date_locator(d1, d2)
assert strings == expected
@pytest.mark.parametrize('t_delta, expected', [
(datetime.timedelta(seconds=0.01), '1997-Jan-01 00:00'),
(datetime.timedelta(minutes=1), '1997-Jan-01 00:01'),
(datetime.timedelta(hours=1), '1997-Jan-01'),
(datetime.timedelta(days=1), '1997-Jan-02'),
(datetime.timedelta(weeks=1), '1997-Jan'),
(datetime.timedelta(weeks=26), ''),
(datetime.timedelta(weeks=520), '')
])
def test_concise_formatter_show_offset(t_delta, expected):
d1 = datetime.datetime(1997, 1, 1)
d2 = d1 + t_delta
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.plot([d1, d2], [0, 0])
fig.canvas.draw()
assert formatter.get_offset() == expected
def test_concise_converter_stays():
# This test demonstrates problems introduced by gh-23417 (reverted in gh-25278)
# In particular, downstream libraries like Pandas had their designated converters
# overridden by actions like setting xlim (or plotting additional points using
# stdlib/numpy dates and string date representation, which otherwise work fine with
# their date converters)
# While this is a bit of a toy example that would be unusual to see it demonstrates
# the same ideas (namely having a valid converter already applied that is desired)
# without introducing additional subclasses.
# See also discussion at gh-25219 for how Pandas was affected
x = [datetime.datetime(2000, 1, 1), datetime.datetime(2020, 2, 20)]
y = [0, 1]
fig, ax = plt.subplots()
ax.plot(x, y)
# Bypass Switchable date converter
ax.xaxis.converter = conv = mdates.ConciseDateConverter()
assert ax.xaxis.units is None
ax.set_xlim(*x)
assert ax.xaxis.converter == conv
def test_offset_changes():
fig, ax = plt.subplots()
d1 = datetime.datetime(1997, 1, 1)
d2 = d1 + datetime.timedelta(weeks=520)
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.plot([d1, d2], [0, 0])
fig.draw_without_rendering()
assert formatter.get_offset() == ''
ax.set_xlim(d1, d1 + datetime.timedelta(weeks=3))
fig.draw_without_rendering()
assert formatter.get_offset() == '1997-Jan'
ax.set_xlim(d1 + datetime.timedelta(weeks=7),
d1 + datetime.timedelta(weeks=30))
fig.draw_without_rendering()
assert formatter.get_offset() == '1997'
ax.set_xlim(d1, d1 + datetime.timedelta(weeks=520))
fig.draw_without_rendering()
assert formatter.get_offset() == ''
@pytest.mark.parametrize('t_delta, expected', [
(datetime.timedelta(weeks=52 * 200),
['$\\mathdefault{%d}$' % (t, ) for t in range(1980, 2201, 20)]),
(datetime.timedelta(days=40),
['Jan', '$\\mathdefault{05}$', '$\\mathdefault{09}$',
'$\\mathdefault{13}$', '$\\mathdefault{17}$', '$\\mathdefault{21}$',
'$\\mathdefault{25}$', '$\\mathdefault{29}$', 'Feb',
'$\\mathdefault{05}$', '$\\mathdefault{09}$']),
(datetime.timedelta(hours=40),
['Jan$\\mathdefault{{-}01}$', '$\\mathdefault{04{:}00}$',
'$\\mathdefault{08{:}00}$', '$\\mathdefault{12{:}00}$',
'$\\mathdefault{16{:}00}$', '$\\mathdefault{20{:}00}$',
'Jan$\\mathdefault{{-}02}$', '$\\mathdefault{04{:}00}$',
'$\\mathdefault{08{:}00}$', '$\\mathdefault{12{:}00}$',
'$\\mathdefault{16{:}00}$']),
(datetime.timedelta(seconds=2),
['$\\mathdefault{59.5}$', '$\\mathdefault{00{:}00}$',
'$\\mathdefault{00.5}$', '$\\mathdefault{01.0}$',
'$\\mathdefault{01.5}$', '$\\mathdefault{02.0}$',
'$\\mathdefault{02.5}$']),
])
def test_concise_formatter_usetex(t_delta, expected):
d1 = datetime.datetime(1997, 1, 1)
d2 = d1 + t_delta
locator = mdates.AutoDateLocator(interval_multiples=True)
locator.create_dummy_axis()
locator.axis.set_view_interval(mdates.date2num(d1), mdates.date2num(d2))
formatter = mdates.ConciseDateFormatter(locator, usetex=True)
assert formatter.format_ticks(locator()) == expected
def test_concise_formatter_formats():
formats = ['%Y', '%m/%Y', 'day: %d',
'%H hr %M min', '%H hr %M min', '%S.%f sec']
def _create_auto_date_locator(date1, date2):
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(locator, formats=formats)
ax.yaxis.set_major_locator(locator)
ax.yaxis.set_major_formatter(formatter)
ax.set_ylim(date1, date2)
fig.canvas.draw()
sts = [st.get_text() for st in ax.get_yticklabels()]
return sts
d1 = datetime.datetime(1997, 1, 1)
results = (
[datetime.timedelta(weeks=52 * 200), [str(t) for t in range(1980,
2201, 20)]],
[datetime.timedelta(weeks=52), [
'1997', '02/1997', '03/1997', '04/1997', '05/1997', '06/1997',
'07/1997', '08/1997', '09/1997', '10/1997', '11/1997', '12/1997',
]],
[datetime.timedelta(days=141), [
'01/1997', 'day: 15', '02/1997', 'day: 15', '03/1997', 'day: 15',
'04/1997', 'day: 15', '05/1997', 'day: 15',
]],
[datetime.timedelta(days=40), [
'01/1997', 'day: 05', 'day: 09', 'day: 13', 'day: 17', 'day: 21',
'day: 25', 'day: 29', '02/1997', 'day: 05', 'day: 09',
]],
[datetime.timedelta(hours=40), [
'day: 01', '04 hr 00 min', '08 hr 00 min', '12 hr 00 min',
'16 hr 00 min', '20 hr 00 min', 'day: 02', '04 hr 00 min',
'08 hr 00 min', '12 hr 00 min', '16 hr 00 min',
]],
[datetime.timedelta(minutes=20), ['00 hr 00 min', '00 hr 05 min',
'00 hr 10 min', '00 hr 15 min', '00 hr 20 min']],
[datetime.timedelta(seconds=40), [
'00 hr 00 min', '05.000000 sec', '10.000000 sec',
'15.000000 sec', '20.000000 sec', '25.000000 sec',
'30.000000 sec', '35.000000 sec', '40.000000 sec',
]],
[datetime.timedelta(seconds=2), [
'59.500000 sec', '00 hr 00 min', '00.500000 sec', '01.000000 sec',
'01.500000 sec', '02.000000 sec', '02.500000 sec',
]],
)
for t_delta, expected in results:
d2 = d1 + t_delta
strings = _create_auto_date_locator(d1, d2)
assert strings == expected
def test_concise_formatter_zformats():
zero_formats = ['', "'%y", '%B', '%m-%d', '%S', '%S.%f']
def _create_auto_date_locator(date1, date2):
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(
locator, zero_formats=zero_formats)
ax.yaxis.set_major_locator(locator)
ax.yaxis.set_major_formatter(formatter)
ax.set_ylim(date1, date2)
fig.canvas.draw()
sts = [st.get_text() for st in ax.get_yticklabels()]
return sts
d1 = datetime.datetime(1997, 1, 1)
results = ([datetime.timedelta(weeks=52 * 200),
[str(t) for t in range(1980, 2201, 20)]
],
[datetime.timedelta(weeks=52),
["'97", 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
],
[datetime.timedelta(days=141),
['January', '15', 'February', '15', 'March',
'15', 'April', '15', 'May', '15']
],
[datetime.timedelta(days=40),
['January', '05', '09', '13', '17', '21',
'25', '29', 'February', '05', '09']
],
[datetime.timedelta(hours=40),
['01-01', '04:00', '08:00', '12:00', '16:00', '20:00',
'01-02', '04:00', '08:00', '12:00', '16:00']
],
[datetime.timedelta(minutes=20),
['00', '00:05', '00:10', '00:15', '00:20']
],
[datetime.timedelta(seconds=40),
['00', '05', '10', '15', '20', '25', '30', '35', '40']
],
[datetime.timedelta(seconds=2),
['59.5', '00.0', '00.5', '01.0', '01.5', '02.0', '02.5']
],
)
for t_delta, expected in results:
d2 = d1 + t_delta
strings = _create_auto_date_locator(d1, d2)
assert strings == expected
def test_concise_formatter_tz():
def _create_auto_date_locator(date1, date2, tz):
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(locator, tz=tz)
ax.yaxis.set_major_locator(locator)
ax.yaxis.set_major_formatter(formatter)
ax.set_ylim(date1, date2)
fig.canvas.draw()
sts = [st.get_text() for st in ax.get_yticklabels()]
return sts, ax.yaxis.get_offset_text().get_text()
d1 = datetime.datetime(1997, 1, 1).replace(tzinfo=datetime.timezone.utc)
results = ([datetime.timedelta(hours=40),
['03:00', '07:00', '11:00', '15:00', '19:00', '23:00',
'03:00', '07:00', '11:00', '15:00', '19:00'],
"1997-Jan-02"
],
[datetime.timedelta(minutes=20),
['03:00', '03:05', '03:10', '03:15', '03:20'],
"1997-Jan-01"
],
[datetime.timedelta(seconds=40),
['03:00', '05', '10', '15', '20', '25', '30', '35', '40'],
"1997-Jan-01 03:00"
],
[datetime.timedelta(seconds=2),
['59.5', '03:00', '00.5', '01.0', '01.5', '02.0', '02.5'],
"1997-Jan-01 03:00"
],
)
new_tz = datetime.timezone(datetime.timedelta(hours=3))
for t_delta, expected_strings, expected_offset in results:
d2 = d1 + t_delta
strings, offset = _create_auto_date_locator(d1, d2, new_tz)
assert strings == expected_strings
assert offset == expected_offset
def test_auto_date_locator_intmult_tz():
def _create_auto_date_locator(date1, date2, tz):
locator = mdates.AutoDateLocator(interval_multiples=True, tz=tz)
locator.create_dummy_axis()
locator.axis.set_view_interval(*mdates.date2num([date1, date2]))
return locator
results = ([datetime.timedelta(weeks=52*200),
['1980-01-01 00:00:00-08:00', '2000-01-01 00:00:00-08:00',
'2020-01-01 00:00:00-08:00', '2040-01-01 00:00:00-08:00',
'2060-01-01 00:00:00-08:00', '2080-01-01 00:00:00-08:00',
'2100-01-01 00:00:00-08:00', '2120-01-01 00:00:00-08:00',
'2140-01-01 00:00:00-08:00', '2160-01-01 00:00:00-08:00',
'2180-01-01 00:00:00-08:00', '2200-01-01 00:00:00-08:00']
],
[datetime.timedelta(weeks=52),
['1997-01-01 00:00:00-08:00', '1997-02-01 00:00:00-08:00',
'1997-03-01 00:00:00-08:00', '1997-04-01 00:00:00-08:00',
'1997-05-01 00:00:00-07:00', '1997-06-01 00:00:00-07:00',
'1997-07-01 00:00:00-07:00', '1997-08-01 00:00:00-07:00',
'1997-09-01 00:00:00-07:00', '1997-10-01 00:00:00-07:00',
'1997-11-01 00:00:00-08:00', '1997-12-01 00:00:00-08:00']
],
[datetime.timedelta(days=141),
['1997-01-01 00:00:00-08:00', '1997-01-15 00:00:00-08:00',
'1997-02-01 00:00:00-08:00', '1997-02-15 00:00:00-08:00',
'1997-03-01 00:00:00-08:00', '1997-03-15 00:00:00-08:00',
'1997-04-01 00:00:00-08:00', '1997-04-15 00:00:00-07:00',
'1997-05-01 00:00:00-07:00', '1997-05-15 00:00:00-07:00']
],
[datetime.timedelta(days=40),
['1997-01-01 00:00:00-08:00', '1997-01-05 00:00:00-08:00',
'1997-01-09 00:00:00-08:00', '1997-01-13 00:00:00-08:00',
'1997-01-17 00:00:00-08:00', '1997-01-21 00:00:00-08:00',
'1997-01-25 00:00:00-08:00', '1997-01-29 00:00:00-08:00',
'1997-02-01 00:00:00-08:00', '1997-02-05 00:00:00-08:00',
'1997-02-09 00:00:00-08:00']
],
[datetime.timedelta(hours=40),
['1997-01-01 00:00:00-08:00', '1997-01-01 04:00:00-08:00',
'1997-01-01 08:00:00-08:00', '1997-01-01 12:00:00-08:00',
'1997-01-01 16:00:00-08:00', '1997-01-01 20:00:00-08:00',
'1997-01-02 00:00:00-08:00', '1997-01-02 04:00:00-08:00',
'1997-01-02 08:00:00-08:00', '1997-01-02 12:00:00-08:00',
'1997-01-02 16:00:00-08:00']
],
[datetime.timedelta(minutes=20),
['1997-01-01 00:00:00-08:00', '1997-01-01 00:05:00-08:00',
'1997-01-01 00:10:00-08:00', '1997-01-01 00:15:00-08:00',
'1997-01-01 00:20:00-08:00']
],
[datetime.timedelta(seconds=40),
['1997-01-01 00:00:00-08:00', '1997-01-01 00:00:05-08:00',
'1997-01-01 00:00:10-08:00', '1997-01-01 00:00:15-08:00',
'1997-01-01 00:00:20-08:00', '1997-01-01 00:00:25-08:00',
'1997-01-01 00:00:30-08:00', '1997-01-01 00:00:35-08:00',
'1997-01-01 00:00:40-08:00']
]
)
tz = dateutil.tz.gettz('Canada/Pacific')
d1 = datetime.datetime(1997, 1, 1, tzinfo=tz)
for t_delta, expected in results:
with rc_context({'_internal.classic_mode': False}):
d2 = d1 + t_delta
locator = _create_auto_date_locator(d1, d2, tz)
st = list(map(str, mdates.num2date(locator(), tz=tz)))
assert st == expected
@image_comparison(['date_inverted_limit.png'])
def test_date_inverted_limit():
# test ax hline with date inputs
t0 = datetime.datetime(2009, 1, 20)
tf = datetime.datetime(2009, 1, 31)
fig, ax = plt.subplots()
ax.axhline(t0, color="blue", lw=3)
ax.set_ylim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
ax.invert_yaxis()
fig.subplots_adjust(left=0.25)
def _test_date2num_dst(date_range, tz_convert):
# Timezones
BRUSSELS = dateutil.tz.gettz('Europe/Brussels')
UTC = mdates.UTC
# Create a list of timezone-aware datetime objects in UTC
# Interval is 0b0.0000011 days, to prevent float rounding issues
dtstart = datetime.datetime(2014, 3, 30, 0, 0, tzinfo=UTC)
interval = datetime.timedelta(minutes=33, seconds=45)
interval_days = interval.seconds / 86400
N = 8
dt_utc = date_range(start=dtstart, freq=interval, periods=N)
dt_bxl = tz_convert(dt_utc, BRUSSELS)
t0 = 735322.0 + mdates.date2num(np.datetime64('0000-12-31'))
expected_ordinalf = [t0 + (i * interval_days) for i in range(N)]
actual_ordinalf = list(mdates.date2num(dt_bxl))
assert actual_ordinalf == expected_ordinalf
def test_date2num_dst():
# Test for github issue #3896, but in date2num around DST transitions
# with a timezone-aware pandas date_range object.
class dt_tzaware(datetime.datetime):
"""
This bug specifically occurs because of the normalization behavior of
pandas Timestamp objects, so in order to replicate it, we need a
datetime-like object that applies timezone normalization after
subtraction.
"""
def __sub__(self, other):
r = super().__sub__(other)
tzinfo = getattr(r, 'tzinfo', None)
if tzinfo is not None:
localizer = getattr(tzinfo, 'normalize', None)
if localizer is not None:
r = tzinfo.normalize(r)
if isinstance(r, datetime.datetime):
r = self.mk_tzaware(r)
return r
def __add__(self, other):
return self.mk_tzaware(super().__add__(other))
def astimezone(self, tzinfo):
dt = super().astimezone(tzinfo)
return self.mk_tzaware(dt)
@classmethod
def mk_tzaware(cls, datetime_obj):
kwargs = {}
attrs = ('year',
'month',
'day',
'hour',
'minute',
'second',
'microsecond',
'tzinfo')
for attr in attrs:
val = getattr(datetime_obj, attr, None)
if val is not None:
kwargs[attr] = val
return cls(**kwargs)
# Define a date_range function similar to pandas.date_range
def date_range(start, freq, periods):
dtstart = dt_tzaware.mk_tzaware(start)
return [dtstart + (i * freq) for i in range(periods)]
# Define a tz_convert function that converts a list to a new timezone.
def tz_convert(dt_list, tzinfo):
return [d.astimezone(tzinfo) for d in dt_list]
_test_date2num_dst(date_range, tz_convert)
def test_date2num_dst_pandas(pd):
# Test for github issue #3896, but in date2num around DST transitions
# with a timezone-aware pandas date_range object.
def tz_convert(*args):
return pd.DatetimeIndex.tz_convert(*args).astype(object)
_test_date2num_dst(pd.date_range, tz_convert)
def _test_rrulewrapper(attach_tz, get_tz):
SYD = get_tz('Australia/Sydney')
dtstart = attach_tz(datetime.datetime(2017, 4, 1, 0), SYD)
dtend = attach_tz(datetime.datetime(2017, 4, 4, 0), SYD)
rule = mdates.rrulewrapper(freq=dateutil.rrule.DAILY, dtstart=dtstart)
act = rule.between(dtstart, dtend)
exp = [datetime.datetime(2017, 4, 1, 13, tzinfo=dateutil.tz.tzutc()),
datetime.datetime(2017, 4, 2, 14, tzinfo=dateutil.tz.tzutc())]
assert act == exp
def test_rrulewrapper():
def attach_tz(dt, zi):
return dt.replace(tzinfo=zi)
_test_rrulewrapper(attach_tz, dateutil.tz.gettz)
SYD = dateutil.tz.gettz('Australia/Sydney')
dtstart = datetime.datetime(2017, 4, 1, 0)
dtend = datetime.datetime(2017, 4, 4, 0)
rule = mdates.rrulewrapper(freq=dateutil.rrule.DAILY, dtstart=dtstart,
tzinfo=SYD, until=dtend)
assert rule.after(dtstart) == datetime.datetime(2017, 4, 2, 0, 0,
tzinfo=SYD)
assert rule.before(dtend) == datetime.datetime(2017, 4, 3, 0, 0,
tzinfo=SYD)
# Test parts of __getattr__
assert rule._base_tzinfo == SYD
assert rule._interval == 1
@pytest.mark.pytz
def test_rrulewrapper_pytz():
# Test to make sure pytz zones are supported in rrules
pytz = pytest.importorskip("pytz")
def attach_tz(dt, zi):
return zi.localize(dt)
_test_rrulewrapper(attach_tz, pytz.timezone)
@pytest.mark.pytz
def test_yearlocator_pytz():
pytz = pytest.importorskip("pytz")
tz = pytz.timezone('America/New_York')
x = [tz.localize(datetime.datetime(2010, 1, 1))
+ datetime.timedelta(i) for i in range(2000)]
locator = mdates.AutoDateLocator(interval_multiples=True, tz=tz)
locator.create_dummy_axis()
locator.axis.set_view_interval(mdates.date2num(x[0])-1.0,
mdates.date2num(x[-1])+1.0)
t = np.array([733408.208333, 733773.208333, 734138.208333,
734503.208333, 734869.208333, 735234.208333, 735599.208333])
# convert to new epoch from old...
t = t + mdates.date2num(np.datetime64('0000-12-31'))
np.testing.assert_allclose(t, locator())
expected = ['2009-01-01 00:00:00-05:00',
'2010-01-01 00:00:00-05:00', '2011-01-01 00:00:00-05:00',
'2012-01-01 00:00:00-05:00', '2013-01-01 00:00:00-05:00',
'2014-01-01 00:00:00-05:00', '2015-01-01 00:00:00-05:00']
st = list(map(str, mdates.num2date(locator(), tz=tz)))
assert st == expected
assert np.allclose(locator.tick_values(x[0], x[1]), np.array(
[14610.20833333, 14610.33333333, 14610.45833333, 14610.58333333,
14610.70833333, 14610.83333333, 14610.95833333, 14611.08333333,
14611.20833333]))
assert np.allclose(locator.get_locator(x[1], x[0]).tick_values(x[0], x[1]),
np.array(
[14610.20833333, 14610.33333333, 14610.45833333, 14610.58333333,
14610.70833333, 14610.83333333, 14610.95833333, 14611.08333333,
14611.20833333]))
def test_YearLocator():
def _create_year_locator(date1, date2, **kwargs):
locator = mdates.YearLocator(**kwargs)
locator.create_dummy_axis()
locator.axis.set_view_interval(mdates.date2num(date1),
mdates.date2num(date2))
return locator
d1 = datetime.datetime(1990, 1, 1)
results = ([datetime.timedelta(weeks=52 * 200),
{'base': 20, 'month': 1, 'day': 1},
['1980-01-01 00:00:00+00:00', '2000-01-01 00:00:00+00:00',
'2020-01-01 00:00:00+00:00', '2040-01-01 00:00:00+00:00',
'2060-01-01 00:00:00+00:00', '2080-01-01 00:00:00+00:00',
'2100-01-01 00:00:00+00:00', '2120-01-01 00:00:00+00:00',
'2140-01-01 00:00:00+00:00', '2160-01-01 00:00:00+00:00',
'2180-01-01 00:00:00+00:00', '2200-01-01 00:00:00+00:00']
],
[datetime.timedelta(weeks=52 * 200),
{'base': 20, 'month': 5, 'day': 16},
['1980-05-16 00:00:00+00:00', '2000-05-16 00:00:00+00:00',
'2020-05-16 00:00:00+00:00', '2040-05-16 00:00:00+00:00',
'2060-05-16 00:00:00+00:00', '2080-05-16 00:00:00+00:00',
'2100-05-16 00:00:00+00:00', '2120-05-16 00:00:00+00:00',
'2140-05-16 00:00:00+00:00', '2160-05-16 00:00:00+00:00',
'2180-05-16 00:00:00+00:00', '2200-05-16 00:00:00+00:00']
],
[datetime.timedelta(weeks=52 * 5),
{'base': 20, 'month': 9, 'day': 25},
['1980-09-25 00:00:00+00:00', '2000-09-25 00:00:00+00:00']
],
)
for delta, arguments, expected in results:
d2 = d1 + delta
locator = _create_year_locator(d1, d2, **arguments)
assert list(map(str, mdates.num2date(locator()))) == expected
def test_DayLocator():
with pytest.raises(ValueError):
mdates.DayLocator(interval=-1)
with pytest.raises(ValueError):
mdates.DayLocator(interval=-1.5)
with pytest.raises(ValueError):
mdates.DayLocator(interval=0)
with pytest.raises(ValueError):
mdates.DayLocator(interval=1.3)
mdates.DayLocator(interval=1.0)
def test_tz_utc():
dt = datetime.datetime(1970, 1, 1, tzinfo=mdates.UTC)
assert dt.tzname() == 'UTC'
@pytest.mark.parametrize("x, tdelta",
[(1, datetime.timedelta(days=1)),
([1, 1.5], [datetime.timedelta(days=1),
datetime.timedelta(days=1.5)])])
def test_num2timedelta(x, tdelta):
dt = mdates.num2timedelta(x)
assert dt == tdelta
def test_datetime64_in_list():
dt = [np.datetime64('2000-01-01'), np.datetime64('2001-01-01')]
dn = mdates.date2num(dt)
# convert fixed values from old to new epoch
t = (np.array([730120., 730486.]) +
mdates.date2num(np.datetime64('0000-12-31')))
np.testing.assert_equal(dn, t)
def test_change_epoch():
date = np.datetime64('2000-01-01')
# use private method to clear the epoch and allow it to be set...
mdates._reset_epoch_test_example()
mdates.get_epoch() # Set default.
with pytest.raises(RuntimeError):
# this should fail here because there is a sentinel on the epoch
# if the epoch has been used then it cannot be set.
mdates.set_epoch('0000-01-01')
mdates._reset_epoch_test_example()
mdates.set_epoch('1970-01-01')
dt = (date - np.datetime64('1970-01-01')).astype('datetime64[D]')
dt = dt.astype('int')
np.testing.assert_equal(mdates.date2num(date), float(dt))
mdates._reset_epoch_test_example()
mdates.set_epoch('0000-12-31')
np.testing.assert_equal(mdates.date2num(date), 730120.0)
mdates._reset_epoch_test_example()
mdates.set_epoch('1970-01-01T01:00:00')
np.testing.assert_allclose(mdates.date2num(date), dt - 1./24.)
mdates._reset_epoch_test_example()
mdates.set_epoch('1970-01-01T00:00:00')
np.testing.assert_allclose(
mdates.date2num(np.datetime64('1970-01-01T12:00:00')),
0.5)
def test_warn_notintervals():
dates = np.arange('2001-01-10', '2001-03-04', dtype='datetime64[D]')
locator = mdates.AutoDateLocator(interval_multiples=False)
locator.intervald[3] = [2]
locator.create_dummy_axis()
locator.axis.set_view_interval(mdates.date2num(dates[0]),
mdates.date2num(dates[-1]))
with pytest.warns(UserWarning, match="AutoDateLocator was unable"):
locs = locator()
def test_change_converter():
plt.rcParams['date.converter'] = 'concise'
dates = np.arange('2020-01-01', '2020-05-01', dtype='datetime64[D]')
fig, ax = plt.subplots()
ax.plot(dates, np.arange(len(dates)))
fig.canvas.draw()
assert ax.get_xticklabels()[0].get_text() == 'Jan'
assert ax.get_xticklabels()[1].get_text() == '15'
plt.rcParams['date.converter'] = 'auto'
fig, ax = plt.subplots()
ax.plot(dates, np.arange(len(dates)))
fig.canvas.draw()
assert ax.get_xticklabels()[0].get_text() == 'Jan 01 2020'
assert ax.get_xticklabels()[1].get_text() == 'Jan 15 2020'
with pytest.raises(ValueError):
plt.rcParams['date.converter'] = 'boo'
def test_change_interval_multiples():
plt.rcParams['date.interval_multiples'] = False
dates = np.arange('2020-01-10', '2020-05-01', dtype='datetime64[D]')
fig, ax = plt.subplots()
ax.plot(dates, np.arange(len(dates)))
fig.canvas.draw()
assert ax.get_xticklabels()[0].get_text() == 'Jan 10 2020'
assert ax.get_xticklabels()[1].get_text() == 'Jan 24 2020'
plt.rcParams['date.interval_multiples'] = 'True'
fig, ax = plt.subplots()
ax.plot(dates, np.arange(len(dates)))
fig.canvas.draw()
assert ax.get_xticklabels()[0].get_text() == 'Jan 15 2020'
assert ax.get_xticklabels()[1].get_text() == 'Feb 01 2020'
def test_julian2num():
mdates._reset_epoch_test_example()
mdates.set_epoch('0000-12-31')
with pytest.warns(mpl.MatplotlibDeprecationWarning):
# 2440587.5 is julian date for 1970-01-01T00:00:00
# https://en.wikipedia.org/wiki/Julian_day
assert mdates.julian2num(2440588.5) == 719164.0
assert mdates.num2julian(719165.0) == 2440589.5
# set back to the default
mdates._reset_epoch_test_example()
mdates.set_epoch('1970-01-01T00:00:00')
with pytest.warns(mpl.MatplotlibDeprecationWarning):
assert mdates.julian2num(2440588.5) == 1.0
assert mdates.num2julian(2.0) == 2440589.5
def test_DateLocator():
locator = mdates.DateLocator()
# Test nonsingular
assert locator.nonsingular(0, np.inf) == (0, 1)
assert locator.nonsingular(0, 1) == (0, 1)
assert locator.nonsingular(1, 0) == (0, 1)
assert locator.nonsingular(0, 0) == (-2, 2)
locator.create_dummy_axis()
# default values
assert locator.datalim_to_dt() == (
datetime.datetime(1970, 1, 1, 0, 0, tzinfo=datetime.timezone.utc),
datetime.datetime(1970, 1, 2, 0, 0, tzinfo=datetime.timezone.utc))
# Check default is UTC
assert locator.tz == mdates.UTC
tz_str = 'Iceland'
iceland_tz = dateutil.tz.gettz(tz_str)
# Check not Iceland
assert locator.tz != iceland_tz
# Set it to Iceland
locator.set_tzinfo('Iceland')
# Check now it is Iceland
assert locator.tz == iceland_tz
locator.create_dummy_axis()
locator.axis.set_data_interval(*mdates.date2num(["2022-01-10",
"2022-01-08"]))
assert locator.datalim_to_dt() == (
datetime.datetime(2022, 1, 8, 0, 0, tzinfo=iceland_tz),
datetime.datetime(2022, 1, 10, 0, 0, tzinfo=iceland_tz))
# Set rcParam
plt.rcParams['timezone'] = tz_str
# Create a new one in a similar way
locator = mdates.DateLocator()
# Check now it is Iceland
assert locator.tz == iceland_tz
# Test invalid tz values
with pytest.raises(ValueError, match="Aiceland is not a valid timezone"):
mdates.DateLocator(tz="Aiceland")
with pytest.raises(TypeError,
match="tz must be string or tzinfo subclass."):
mdates.DateLocator(tz=1)
def test_datestr2num():
assert mdates.datestr2num('2022-01-10') == 19002.0
dt = datetime.date(year=2022, month=1, day=10)
assert mdates.datestr2num('2022-01', default=dt) == 19002.0
assert np.all(mdates.datestr2num(
['2022-01', '2022-02'], default=dt
) == np.array([19002., 19033.]))
assert mdates.datestr2num([]).size == 0
assert mdates.datestr2num([], datetime.date(year=2022,
month=1, day=10)).size == 0
@pytest.mark.parametrize('kwarg',
('formats', 'zero_formats', 'offset_formats'))
def test_concise_formatter_exceptions(kwarg):
locator = mdates.AutoDateLocator()
kwargs = {kwarg: ['', '%Y']}
match = f"{kwarg} argument must be a list"
with pytest.raises(ValueError, match=match):
mdates.ConciseDateFormatter(locator, **kwargs)
def test_concise_formatter_call():
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
assert formatter(19002.0) == '2022'
assert formatter.format_data_short(19002.0) == '2022-01-10 00:00:00'
def test_datetime_masked():
# make sure that all-masked data falls back to the viewlim
# set in convert.axisinfo....
x = np.array([datetime.datetime(2017, 1, n) for n in range(1, 6)])
y = np.array([1, 2, 3, 4, 5])
m = np.ma.masked_greater(y, 0)
fig, ax = plt.subplots()
ax.plot(x, m)
assert ax.get_xlim() == (0, 1)
@pytest.mark.parametrize('val', (-1000000, 10000000))
def test_num2date_error(val):
with pytest.raises(ValueError, match=f"Date ordinal {val} converts"):
mdates.num2date(val)
def test_num2date_roundoff():
assert mdates.num2date(100000.0000578702) == datetime.datetime(
2243, 10, 17, 0, 0, 4, 999980, tzinfo=datetime.timezone.utc)
# Slightly larger, steps of 20 microseconds
assert mdates.num2date(100000.0000578703) == datetime.datetime(
2243, 10, 17, 0, 0, 5, tzinfo=datetime.timezone.utc)
def test_DateFormatter_settz():
time = mdates.date2num(datetime.datetime(2011, 1, 1, 0, 0,
tzinfo=mdates.UTC))
formatter = mdates.DateFormatter('%Y-%b-%d %H:%M')
# Default UTC
assert formatter(time) == '2011-Jan-01 00:00'
# Set tzinfo
formatter.set_tzinfo('Pacific/Kiritimati')
assert formatter(time) == '2011-Jan-01 14:00'
|