Spaces:
Build error
Build error
File size: 31,628 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from mmpose.core.post_processing import (get_affine_transform, get_warp_matrix,
warp_affine_joints)
from mmpose.datasets.builder import PIPELINES
from .shared_transform import Compose
def _ceil_to_multiples_of(x, base=64):
"""Transform x to the integral multiple of the base."""
return int(np.ceil(x / base)) * base
def _get_multi_scale_size(image,
input_size,
current_scale,
min_scale,
use_udp=False):
"""Get the size for multi-scale training.
Args:
image: Input image.
input_size (np.ndarray[2]): Size (w, h) of the image input.
current_scale (float): Scale factor.
min_scale (float): Minimal scale.
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
Returns:
tuple: A tuple containing multi-scale sizes.
- (w_resized, h_resized) (tuple(int)): resized width/height
- center (np.ndarray)image center
- scale (np.ndarray): scales wrt width/height
"""
assert len(input_size) == 2
h, w, _ = image.shape
# calculate the size for min_scale
min_input_w = _ceil_to_multiples_of(min_scale * input_size[0], 64)
min_input_h = _ceil_to_multiples_of(min_scale * input_size[1], 64)
if w < h:
w_resized = int(min_input_w * current_scale / min_scale)
h_resized = int(
_ceil_to_multiples_of(min_input_w / w * h, 64) * current_scale /
min_scale)
if use_udp:
scale_w = w - 1.0
scale_h = (h_resized - 1.0) / (w_resized - 1.0) * (w - 1.0)
else:
scale_w = w / 200.0
scale_h = h_resized / w_resized * w / 200.0
else:
h_resized = int(min_input_h * current_scale / min_scale)
w_resized = int(
_ceil_to_multiples_of(min_input_h / h * w, 64) * current_scale /
min_scale)
if use_udp:
scale_h = h - 1.0
scale_w = (w_resized - 1.0) / (h_resized - 1.0) * (h - 1.0)
else:
scale_h = h / 200.0
scale_w = w_resized / h_resized * h / 200.0
if use_udp:
center = (scale_w / 2.0, scale_h / 2.0)
else:
center = np.array([round(w / 2.0), round(h / 2.0)])
return (w_resized, h_resized), center, np.array([scale_w, scale_h])
def _resize_align_multi_scale(image, input_size, current_scale, min_scale):
"""Resize the images for multi-scale training.
Args:
image: Input image
input_size (np.ndarray[2]): Size (w, h) of the image input
current_scale (float): Current scale
min_scale (float): Minimal scale
Returns:
tuple: A tuple containing image info.
- image_resized (np.ndarray): resized image
- center (np.ndarray): center of image
- scale (np.ndarray): scale
"""
assert len(input_size) == 2
size_resized, center, scale = _get_multi_scale_size(
image, input_size, current_scale, min_scale)
trans = get_affine_transform(center, scale, 0, size_resized)
image_resized = cv2.warpAffine(image, trans, size_resized)
return image_resized, center, scale
def _resize_align_multi_scale_udp(image, input_size, current_scale, min_scale):
"""Resize the images for multi-scale training.
Args:
image: Input image
input_size (np.ndarray[2]): Size (w, h) of the image input
current_scale (float): Current scale
min_scale (float): Minimal scale
Returns:
tuple: A tuple containing image info.
- image_resized (np.ndarray): resized image
- center (np.ndarray): center of image
- scale (np.ndarray): scale
"""
assert len(input_size) == 2
size_resized, _, _ = _get_multi_scale_size(image, input_size,
current_scale, min_scale, True)
_, center, scale = _get_multi_scale_size(image, input_size, min_scale,
min_scale, True)
trans = get_warp_matrix(
theta=0,
size_input=np.array(scale, dtype=np.float32),
size_dst=np.array(size_resized, dtype=np.float32) - 1.0,
size_target=np.array(scale, dtype=np.float32))
image_resized = cv2.warpAffine(
image.copy(), trans, size_resized, flags=cv2.INTER_LINEAR)
return image_resized, center, scale
class HeatmapGenerator:
"""Generate heatmaps for bottom-up models.
Args:
num_joints (int): Number of keypoints
output_size (np.ndarray): Size (w, h) of feature map
sigma (int): Sigma of the heatmaps.
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, output_size, num_joints, sigma=-1, use_udp=False):
if not isinstance(output_size, np.ndarray):
output_size = np.array(output_size)
if output_size.size > 1:
assert len(output_size) == 2
self.output_size = output_size
else:
self.output_size = np.array([output_size, output_size],
dtype=np.int)
self.num_joints = num_joints
if sigma < 0:
sigma = self.output_size.prod()**0.5 / 64
self.sigma = sigma
size = 6 * sigma + 3
self.use_udp = use_udp
if use_udp:
self.x = np.arange(0, size, 1, np.float32)
self.y = self.x[:, None]
else:
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
x0, y0 = 3 * sigma + 1, 3 * sigma + 1
self.g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
def __call__(self, joints):
"""Generate heatmaps."""
hms = np.zeros(
(self.num_joints, self.output_size[1], self.output_size[0]),
dtype=np.float32)
sigma = self.sigma
for p in joints:
for idx, pt in enumerate(p):
if pt[2] > 0:
x, y = int(pt[0]), int(pt[1])
if x < 0 or y < 0 or \
x >= self.output_size[0] or y >= self.output_size[1]:
continue
if self.use_udp:
x0 = 3 * sigma + 1 + pt[0] - x
y0 = 3 * sigma + 1 + pt[1] - y
g = np.exp(-((self.x - x0)**2 + (self.y - y0)**2) /
(2 * sigma**2))
else:
g = self.g
ul = int(np.round(x - 3 * sigma -
1)), int(np.round(y - 3 * sigma - 1))
br = int(np.round(x + 3 * sigma +
2)), int(np.round(y + 3 * sigma + 2))
c, d = max(0,
-ul[0]), min(br[0], self.output_size[0]) - ul[0]
a, b = max(0,
-ul[1]), min(br[1], self.output_size[1]) - ul[1]
cc, dd = max(0, ul[0]), min(br[0], self.output_size[0])
aa, bb = max(0, ul[1]), min(br[1], self.output_size[1])
hms[idx, aa:bb,
cc:dd] = np.maximum(hms[idx, aa:bb, cc:dd], g[a:b,
c:d])
return hms
class JointsEncoder:
"""Encodes the visible joints into (coordinates, score); The coordinate of
one joint and its score are of `int` type.
(idx * output_size**2 + y * output_size + x, 1) or (0, 0).
Args:
max_num_people(int): Max number of people in an image
num_joints(int): Number of keypoints
output_size(np.ndarray): Size (w, h) of feature map
tag_per_joint(bool): Option to use one tag map per joint.
"""
def __init__(self, max_num_people, num_joints, output_size, tag_per_joint):
self.max_num_people = max_num_people
self.num_joints = num_joints
if not isinstance(output_size, np.ndarray):
output_size = np.array(output_size)
if output_size.size > 1:
assert len(output_size) == 2
self.output_size = output_size
else:
self.output_size = np.array([output_size, output_size],
dtype=np.int)
self.tag_per_joint = tag_per_joint
def __call__(self, joints):
"""
Note:
- number of people in image: N
- number of keypoints: K
- max number of people in an image: M
Args:
joints (np.ndarray[N,K,3])
Returns:
visible_kpts (np.ndarray[M,K,2]).
"""
visible_kpts = np.zeros((self.max_num_people, self.num_joints, 2),
dtype=np.float32)
for i in range(len(joints)):
tot = 0
for idx, pt in enumerate(joints[i]):
x, y = int(pt[0]), int(pt[1])
if (pt[2] > 0 and 0 <= y < self.output_size[1]
and 0 <= x < self.output_size[0]):
if self.tag_per_joint:
visible_kpts[i][tot] = \
(idx * self.output_size.prod()
+ y * self.output_size[0] + x, 1)
else:
visible_kpts[i][tot] = (y * self.output_size[0] + x, 1)
tot += 1
return visible_kpts
class PAFGenerator:
"""Generate part affinity fields.
Args:
output_size (np.ndarray): Size (w, h) of feature map.
limb_width (int): Limb width of part affinity fields.
skeleton (list[list]): connections of joints.
"""
def __init__(self, output_size, limb_width, skeleton):
if not isinstance(output_size, np.ndarray):
output_size = np.array(output_size)
if output_size.size > 1:
assert len(output_size) == 2
self.output_size = output_size
else:
self.output_size = np.array([output_size, output_size],
dtype=np.int)
self.limb_width = limb_width
self.skeleton = skeleton
def _accumulate_paf_map_(self, pafs, src, dst, count):
"""Accumulate part affinity fields between two given joints.
Args:
pafs (np.ndarray[2,H,W]): paf maps (2 dimensions:x axis and
y axis) for a certain limb connection. This argument will
be modified inplace.
src (np.ndarray[2,]): coordinates of the source joint.
dst (np.ndarray[2,]): coordinates of the destination joint.
count (np.ndarray[H,W]): count map that preserves the number
of non-zero vectors at each point. This argument will be
modified inplace.
"""
limb_vec = dst - src
norm = np.linalg.norm(limb_vec)
if norm == 0:
unit_limb_vec = np.zeros(2)
else:
unit_limb_vec = limb_vec / norm
min_x = max(np.floor(min(src[0], dst[0]) - self.limb_width), 0)
max_x = min(
np.ceil(max(src[0], dst[0]) + self.limb_width),
self.output_size[0] - 1)
min_y = max(np.floor(min(src[1], dst[1]) - self.limb_width), 0)
max_y = min(
np.ceil(max(src[1], dst[1]) + self.limb_width),
self.output_size[1] - 1)
range_x = list(range(int(min_x), int(max_x + 1), 1))
range_y = list(range(int(min_y), int(max_y + 1), 1))
mask = np.zeros_like(count, dtype=bool)
if len(range_x) > 0 and len(range_y) > 0:
xx, yy = np.meshgrid(range_x, range_y)
delta_x = xx - src[0]
delta_y = yy - src[1]
dist = np.abs(delta_x * unit_limb_vec[1] -
delta_y * unit_limb_vec[0])
mask_local = (dist < self.limb_width)
mask[yy, xx] = mask_local
pafs[0, mask] += unit_limb_vec[0]
pafs[1, mask] += unit_limb_vec[1]
count += mask
return pafs, count
def __call__(self, joints):
"""Generate the target part affinity fields."""
pafs = np.zeros(
(len(self.skeleton) * 2, self.output_size[1], self.output_size[0]),
dtype=np.float32)
for idx, sk in enumerate(self.skeleton):
count = np.zeros((self.output_size[1], self.output_size[0]),
dtype=np.float32)
for p in joints:
src = p[sk[0]]
dst = p[sk[1]]
if src[2] > 0 and dst[2] > 0:
self._accumulate_paf_map_(pafs[2 * idx:2 * idx + 2],
src[:2], dst[:2], count)
pafs[2 * idx:2 * idx + 2] /= np.maximum(count, 1)
return pafs
@PIPELINES.register_module()
class BottomUpRandomFlip:
"""Data augmentation with random image flip for bottom-up.
Args:
flip_prob (float): Probability of flip.
"""
def __init__(self, flip_prob=0.5):
self.flip_prob = flip_prob
def __call__(self, results):
"""Perform data augmentation with random image flip."""
image, mask, joints = results['img'], results['mask'], results[
'joints']
self.flip_index = results['ann_info']['flip_index']
self.output_size = results['ann_info']['heatmap_size']
assert isinstance(mask, list)
assert isinstance(joints, list)
assert len(mask) == len(joints)
assert len(mask) == len(self.output_size)
if np.random.random() < self.flip_prob:
image = image[:, ::-1].copy() - np.zeros_like(image)
for i, _output_size in enumerate(self.output_size):
if not isinstance(_output_size, np.ndarray):
_output_size = np.array(_output_size)
if _output_size.size > 1:
assert len(_output_size) == 2
else:
_output_size = np.array([_output_size, _output_size],
dtype=np.int)
mask[i] = mask[i][:, ::-1].copy()
joints[i] = joints[i][:, self.flip_index]
joints[i][:, :, 0] = _output_size[0] - joints[i][:, :, 0] - 1
results['img'], results['mask'], results[
'joints'] = image, mask, joints
return results
@PIPELINES.register_module()
class BottomUpRandomAffine:
"""Data augmentation with random scaling & rotating.
Args:
rot_factor (int): Rotating to [-rotation_factor, rotation_factor]
scale_factor (float): Scaling to [1-scale_factor, 1+scale_factor]
scale_type: wrt ``long`` or ``short`` length of the image.
trans_factor: Translation factor.
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self,
rot_factor,
scale_factor,
scale_type,
trans_factor,
use_udp=False):
self.max_rotation = rot_factor
self.min_scale = scale_factor[0]
self.max_scale = scale_factor[1]
self.scale_type = scale_type
self.trans_factor = trans_factor
self.use_udp = use_udp
def _get_scale(self, image_size, resized_size):
w, h = image_size
w_resized, h_resized = resized_size
if w / w_resized < h / h_resized:
if self.scale_type == 'long':
w_pad = h / h_resized * w_resized
h_pad = h
elif self.scale_type == 'short':
w_pad = w
h_pad = w / w_resized * h_resized
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
else:
if self.scale_type == 'long':
w_pad = w
h_pad = w / w_resized * h_resized
elif self.scale_type == 'short':
w_pad = h / h_resized * w_resized
h_pad = h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
scale = np.array([w_pad, h_pad], dtype=np.float32)
return scale
def __call__(self, results):
"""Perform data augmentation with random scaling & rotating."""
image, mask, joints = results['img'], results['mask'], results[
'joints']
self.input_size = results['ann_info']['image_size']
if not isinstance(self.input_size, np.ndarray):
self.input_size = np.array(self.input_size)
if self.input_size.size > 1:
assert len(self.input_size) == 2
else:
self.input_size = [self.input_size, self.input_size]
self.output_size = results['ann_info']['heatmap_size']
assert isinstance(mask, list)
assert isinstance(joints, list)
assert len(mask) == len(joints)
assert len(mask) == len(self.output_size), (len(mask),
len(self.output_size),
self.output_size)
height, width = image.shape[:2]
if self.use_udp:
center = np.array(((width - 1.0) / 2, (height - 1.0) / 2))
else:
center = np.array((width / 2, height / 2))
img_scale = np.array([width, height], dtype=np.float32)
aug_scale = np.random.random() * (self.max_scale - self.min_scale) \
+ self.min_scale
img_scale *= aug_scale
aug_rot = (np.random.random() * 2 - 1) * self.max_rotation
if self.trans_factor > 0:
dx = np.random.randint(-self.trans_factor * img_scale[0] / 200.0,
self.trans_factor * img_scale[0] / 200.0)
dy = np.random.randint(-self.trans_factor * img_scale[1] / 200.0,
self.trans_factor * img_scale[1] / 200.0)
center[0] += dx
center[1] += dy
if self.use_udp:
for i, _output_size in enumerate(self.output_size):
if not isinstance(_output_size, np.ndarray):
_output_size = np.array(_output_size)
if _output_size.size > 1:
assert len(_output_size) == 2
else:
_output_size = [_output_size, _output_size]
scale = self._get_scale(img_scale, _output_size)
trans = get_warp_matrix(
theta=aug_rot,
size_input=center * 2.0,
size_dst=np.array(
(_output_size[0], _output_size[1]), dtype=np.float32) -
1.0,
size_target=scale)
mask[i] = cv2.warpAffine(
(mask[i] * 255).astype(np.uint8),
trans, (int(_output_size[0]), int(_output_size[1])),
flags=cv2.INTER_LINEAR) / 255
mask[i] = (mask[i] > 0.5).astype(np.float32)
joints[i][:, :, 0:2] = \
warp_affine_joints(joints[i][:, :, 0:2].copy(), trans)
if results['ann_info']['scale_aware_sigma']:
joints[i][:, :, 3] = joints[i][:, :, 3] / aug_scale
scale = self._get_scale(img_scale, self.input_size)
mat_input = get_warp_matrix(
theta=aug_rot,
size_input=center * 2.0,
size_dst=np.array((self.input_size[0], self.input_size[1]),
dtype=np.float32) - 1.0,
size_target=scale)
image = cv2.warpAffine(
image,
mat_input, (int(self.input_size[0]), int(self.input_size[1])),
flags=cv2.INTER_LINEAR)
else:
for i, _output_size in enumerate(self.output_size):
if not isinstance(_output_size, np.ndarray):
_output_size = np.array(_output_size)
if _output_size.size > 1:
assert len(_output_size) == 2
else:
_output_size = [_output_size, _output_size]
scale = self._get_scale(img_scale, _output_size)
mat_output = get_affine_transform(
center=center,
scale=scale / 200.0,
rot=aug_rot,
output_size=_output_size)
mask[i] = cv2.warpAffine(
(mask[i] * 255).astype(np.uint8), mat_output,
(int(_output_size[0]), int(_output_size[1]))) / 255
mask[i] = (mask[i] > 0.5).astype(np.float32)
joints[i][:, :, 0:2] = \
warp_affine_joints(joints[i][:, :, 0:2], mat_output)
if results['ann_info']['scale_aware_sigma']:
joints[i][:, :, 3] = joints[i][:, :, 3] / aug_scale
scale = self._get_scale(img_scale, self.input_size)
mat_input = get_affine_transform(
center=center,
scale=scale / 200.0,
rot=aug_rot,
output_size=self.input_size)
image = cv2.warpAffine(image, mat_input, (int(
self.input_size[0]), int(self.input_size[1])))
results['img'], results['mask'], results[
'joints'] = image, mask, joints
return results
@PIPELINES.register_module()
class BottomUpGenerateHeatmapTarget:
"""Generate multi-scale heatmap target for bottom-up.
Args:
sigma (int): Sigma of heatmap Gaussian
max_num_people (int): Maximum number of people in an image
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, sigma, use_udp=False):
self.sigma = sigma
self.use_udp = use_udp
def _generate(self, num_joints, heatmap_size):
"""Get heatmap generator."""
heatmap_generator = [
HeatmapGenerator(output_size, num_joints, self.sigma, self.use_udp)
for output_size in heatmap_size
]
return heatmap_generator
def __call__(self, results):
"""Generate multi-scale heatmap target for bottom-up."""
heatmap_generator = \
self._generate(results['ann_info']['num_joints'],
results['ann_info']['heatmap_size'])
target_list = list()
joints_list = results['joints']
for scale_id in range(results['ann_info']['num_scales']):
heatmaps = heatmap_generator[scale_id](joints_list[scale_id])
target_list.append(heatmaps.astype(np.float32))
results['target'] = target_list
return results
@PIPELINES.register_module()
class BottomUpGenerateTarget:
"""Generate multi-scale heatmap target for associate embedding.
Args:
sigma (int): Sigma of heatmap Gaussian
max_num_people (int): Maximum number of people in an image
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, sigma, max_num_people, use_udp=False):
self.sigma = sigma
self.max_num_people = max_num_people
self.use_udp = use_udp
def _generate(self, num_joints, heatmap_size):
"""Get heatmap generator and joint encoder."""
heatmap_generator = [
HeatmapGenerator(output_size, num_joints, self.sigma, self.use_udp)
for output_size in heatmap_size
]
joints_encoder = [
JointsEncoder(self.max_num_people, num_joints, output_size, True)
for output_size in heatmap_size
]
return heatmap_generator, joints_encoder
def __call__(self, results):
"""Generate multi-scale heatmap target for bottom-up."""
heatmap_generator, joints_encoder = \
self._generate(results['ann_info']['num_joints'],
results['ann_info']['heatmap_size'])
target_list = list()
mask_list, joints_list = results['mask'], results['joints']
for scale_id in range(results['ann_info']['num_scales']):
target_t = heatmap_generator[scale_id](joints_list[scale_id])
joints_t = joints_encoder[scale_id](joints_list[scale_id])
target_list.append(target_t.astype(np.float32))
mask_list[scale_id] = mask_list[scale_id].astype(np.float32)
joints_list[scale_id] = joints_t.astype(np.int32)
results['masks'], results['joints'] = mask_list, joints_list
results['targets'] = target_list
return results
@PIPELINES.register_module()
class BottomUpGeneratePAFTarget:
"""Generate multi-scale heatmaps and part affinity fields (PAF) target for
bottom-up. Paper ref: Cao et al. Realtime Multi-Person 2D Human Pose
Estimation using Part Affinity Fields (CVPR 2017).
Args:
limb_width (int): Limb width of part affinity fields
"""
def __init__(self, limb_width, skeleton=None):
self.limb_width = limb_width
self.skeleton = skeleton
def _generate(self, heatmap_size, skeleton):
"""Get PAF generator."""
paf_generator = [
PAFGenerator(output_size, self.limb_width, skeleton)
for output_size in heatmap_size
]
return paf_generator
def __call__(self, results):
"""Generate multi-scale part affinity fields for bottom-up."""
if self.skeleton is None:
assert results['ann_info']['skeleton'] is not None
self.skeleton = results['ann_info']['skeleton']
paf_generator = \
self._generate(results['ann_info']['heatmap_size'],
self.skeleton)
target_list = list()
joints_list = results['joints']
for scale_id in range(results['ann_info']['num_scales']):
pafs = paf_generator[scale_id](joints_list[scale_id])
target_list.append(pafs.astype(np.float32))
results['target'] = target_list
return results
@PIPELINES.register_module()
class BottomUpGetImgSize:
"""Get multi-scale image sizes for bottom-up, including base_size and
test_scale_factor. Keep the ratio and the image is resized to
`results['ann_info']['image_size']×current_scale`.
Args:
test_scale_factor (List[float]): Multi scale
current_scale (int): default 1
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, test_scale_factor, current_scale=1, use_udp=False):
self.test_scale_factor = test_scale_factor
self.min_scale = min(test_scale_factor)
self.current_scale = current_scale
self.use_udp = use_udp
def __call__(self, results):
"""Get multi-scale image sizes for bottom-up."""
input_size = results['ann_info']['image_size']
if not isinstance(input_size, np.ndarray):
input_size = np.array(input_size)
if input_size.size > 1:
assert len(input_size) == 2
else:
input_size = np.array([input_size, input_size], dtype=np.int)
img = results['img']
h, w, _ = img.shape
# calculate the size for min_scale
min_input_w = _ceil_to_multiples_of(self.min_scale * input_size[0], 64)
min_input_h = _ceil_to_multiples_of(self.min_scale * input_size[1], 64)
if w < h:
w_resized = int(min_input_w * self.current_scale / self.min_scale)
h_resized = int(
_ceil_to_multiples_of(min_input_w / w * h, 64) *
self.current_scale / self.min_scale)
if self.use_udp:
scale_w = w - 1.0
scale_h = (h_resized - 1.0) / (w_resized - 1.0) * (w - 1.0)
else:
scale_w = w / 200.0
scale_h = h_resized / w_resized * w / 200.0
else:
h_resized = int(min_input_h * self.current_scale / self.min_scale)
w_resized = int(
_ceil_to_multiples_of(min_input_h / h * w, 64) *
self.current_scale / self.min_scale)
if self.use_udp:
scale_h = h - 1.0
scale_w = (w_resized - 1.0) / (h_resized - 1.0) * (h - 1.0)
else:
scale_h = h / 200.0
scale_w = w_resized / h_resized * h / 200.0
if self.use_udp:
center = (scale_w / 2.0, scale_h / 2.0)
else:
center = np.array([round(w / 2.0), round(h / 2.0)])
results['ann_info']['test_scale_factor'] = self.test_scale_factor
results['ann_info']['base_size'] = (w_resized, h_resized)
results['ann_info']['center'] = center
results['ann_info']['scale'] = np.array([scale_w, scale_h])
return results
@PIPELINES.register_module()
class BottomUpResizeAlign:
"""Resize multi-scale size and align transform for bottom-up.
Args:
transforms (List): ToTensor & Normalize
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, transforms, use_udp=False):
self.transforms = Compose(transforms)
if use_udp:
self._resize_align_multi_scale = _resize_align_multi_scale_udp
else:
self._resize_align_multi_scale = _resize_align_multi_scale
def __call__(self, results):
"""Resize multi-scale size and align transform for bottom-up."""
input_size = results['ann_info']['image_size']
if not isinstance(input_size, np.ndarray):
input_size = np.array(input_size)
if input_size.size > 1:
assert len(input_size) == 2
else:
input_size = np.array([input_size, input_size], dtype=np.int)
test_scale_factor = results['ann_info']['test_scale_factor']
aug_data = []
for _, s in enumerate(sorted(test_scale_factor, reverse=True)):
_results = results.copy()
image_resized, _, _ = self._resize_align_multi_scale(
_results['img'], input_size, s, min(test_scale_factor))
_results['img'] = image_resized
_results = self.transforms(_results)
transformed_img = _results['img'].unsqueeze(0)
aug_data.append(transformed_img)
results['ann_info']['aug_data'] = aug_data
return results
|