File size: 26,979 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
This module provides Pyserini's dense search interface to FAISS index.
The main entry point is the ``FaissSearcher`` class.
"""

import os
import time
from dataclasses import dataclass
from typing import Dict, List, Union, Optional, Tuple

import numpy as np
import pandas as pd

from transformers import (AutoModel, AutoTokenizer, BertModel, BertTokenizer, BertTokenizerFast,
                          DPRQuestionEncoder, DPRQuestionEncoderTokenizer, RobertaTokenizer)
from transformers.file_utils import is_faiss_available, requires_backends

from pyserini.util import (download_encoded_queries, download_prebuilt_index,
                           get_dense_indexes_info, get_sparse_index)
from pyserini.search.lucene import LuceneSearcher
from pyserini.index import Document

from ._model import AnceEncoder
import torch

from ...encode import PcaEncoder

if is_faiss_available():
    import faiss

class QueryEncoder:
    def __init__(self, encoded_query_dir: str = None):
        self.has_model = False
        self.has_encoded_query = False
        if encoded_query_dir:
            self.embedding = self._load_embeddings(encoded_query_dir)
            self.has_encoded_query = True

    def encode(self, query: str):
        return self.embedding[query]

    @classmethod
    def load_encoded_queries(cls, encoded_query_name: str):
        """Build a query encoder from a pre-encoded query; download the encoded queries if necessary.

        Parameters
        ----------
        encoded_query_name : str
            pre encoded query name.

        Returns
        -------
        QueryEncoder
            Encoder built from the pre encoded queries.
        """
        print(f'Attempting to initialize pre-encoded queries {encoded_query_name}.')
        try:
            query_dir = download_encoded_queries(encoded_query_name)
        except ValueError as e:
            print(str(e))
            return None

        print(f'Initializing {encoded_query_name}...')
        return cls(encoded_query_dir=query_dir)

    @staticmethod
    def _load_embeddings(encoded_query_dir):
        df = pd.read_pickle(os.path.join(encoded_query_dir, 'embedding.pkl'))
        return dict(zip(df['text'].tolist(), df['embedding'].tolist()))


class TctColBertQueryEncoder(QueryEncoder):

    def __init__(self, encoder_dir: str = None, tokenizer_name: str = None,
                 encoded_query_dir: str = None, device: str = 'cpu', **kwargs):
        super().__init__(encoded_query_dir)
        if encoder_dir:
            self.device = device
            self.model = BertModel.from_pretrained(encoder_dir)
            self.model.to(self.device)
            self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name or encoder_dir)
            self.has_model = True
        if (not self.has_model) and (not self.has_encoded_query):
            raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one')

    def encode(self, query: str):
        if self.has_model:
            max_length = 36  # hardcode for now
            inputs = self.tokenizer(
                '[CLS] [Q] ' + query + '[MASK]' * max_length,
                max_length=max_length,
                truncation=True,
                add_special_tokens=False,
                return_tensors='pt'
            )
            inputs.to(self.device)
            outputs = self.model(**inputs)
            embeddings = outputs.last_hidden_state.detach().cpu().numpy()
            return np.average(embeddings[:, 4:, :], axis=-2).flatten()
        else:
            return super().encode(query)


class DprQueryEncoder(QueryEncoder):

    def __init__(self, encoder_dir: str = None, tokenizer_name: str = None,
                 encoded_query_dir: str = None, device: str = 'cpu', **kwargs):
        super().__init__(encoded_query_dir)
        if encoder_dir:
            self.device = device
            self.model = DPRQuestionEncoder.from_pretrained(encoder_dir)
            self.model.to(self.device)
            self.tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(tokenizer_name or encoder_dir)
            self.has_model = True
        if (not self.has_model) and (not self.has_encoded_query):
            raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one')

    def encode(self, query: str):
        if self.has_model:
            input_ids = self.tokenizer(query, return_tensors='pt')
            input_ids.to(self.device)
            embeddings = self.model(input_ids["input_ids"]).pooler_output.detach().cpu().numpy()
            return embeddings.flatten()
        else:
            return super().encode(query)


class BprQueryEncoder(QueryEncoder):

    def __init__(self, encoder_dir: str = None, tokenizer_name: str = None,
                 encoded_query_dir: str = None, device: str = 'cpu', **kwargs):
        self.has_model = False
        self.has_encoded_query = False
        if encoded_query_dir:
            self.embedding = self._load_embeddings(encoded_query_dir)
            self.has_encoded_query = True

        if encoder_dir:
            self.device = device
            self.model = DPRQuestionEncoder.from_pretrained(encoder_dir)
            self.model.to(self.device)
            self.tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(tokenizer_name or encoder_dir)
            self.has_model = True
        if (not self.has_model) and (not self.has_encoded_query):
            raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one')

    def encode(self, query: str):
        if self.has_model:
            input_ids = self.tokenizer(query, return_tensors='pt')
            input_ids.to(self.device)
            embeddings = self.model(input_ids["input_ids"]).pooler_output.detach().cpu()
            dense_embeddings = embeddings.numpy()
            sparse_embeddings = self.convert_to_binary_code(embeddings).numpy()
            return {'dense': dense_embeddings.flatten(), 'sparse': sparse_embeddings.flatten()}
        else:
            return super().encode(query)

    def convert_to_binary_code(self, input_repr: torch.Tensor):
        return input_repr.new_ones(input_repr.size()).masked_fill_(input_repr < 0, -1.0)

    @staticmethod
    def _load_embeddings(encoded_query_dir):
        df = pd.read_pickle(os.path.join(encoded_query_dir, 'embedding.pkl'))
        ret = {}
        for text, dense, sparse in zip(df['text'].tolist(), df['dense_embedding'].tolist(),
                                       df['sparse_embedding'].tolist()):
            ret[text] = {'dense': dense, 'sparse': sparse}
        return ret


class DkrrDprQueryEncoder(QueryEncoder):

    def __init__(self, encoder_dir: str = None, encoded_query_dir: str = None, device: str = 'cpu',
                 prefix: str = "question:", **kwargs):
        super().__init__(encoded_query_dir)
        self.device = device
        self.model = BertModel.from_pretrained(encoder_dir)
        self.model.to(self.device)
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        self.has_model = True
        self.prefix = prefix

    @staticmethod
    def _mean_pooling(model_output, attention_mask):
        model_output = model_output[0].masked_fill(1 - attention_mask[:, :, None], 0.)
        model_output = torch.sum(model_output, dim=1) / torch.clamp(torch.sum(attention_mask, dim=1), min=1e-9)[:, None]
        return model_output.flatten()

    def encode(self, query: str):
        if self.has_model:
            if self.prefix:
                query = f'{self.prefix} {query}'
            inputs = self.tokenizer(query, return_tensors='pt', max_length=40, padding="max_length")
            inputs.to(self.device)
            outputs = self.model(input_ids=inputs["input_ids"],
                                 attention_mask=inputs["attention_mask"])
            embeddings = self._mean_pooling(outputs, inputs['attention_mask']).detach().cpu().numpy()
            return embeddings.flatten()
        else:
            return super().encode(query)


class AnceQueryEncoder(QueryEncoder):

    def __init__(self, encoder_dir: str = None, tokenizer_name: str = None,
                 encoded_query_dir: str = None, device: str = 'cpu', **kwargs):
        super().__init__(encoded_query_dir)
        if encoder_dir:
            self.device = device
            self.model = AnceEncoder.from_pretrained(encoder_dir)
            self.model.to(self.device)
            self.tokenizer = RobertaTokenizer.from_pretrained(tokenizer_name or encoder_dir)
            self.has_model = True
            self.tokenizer.do_lower_case = True
        if (not self.has_model) and (not self.has_encoded_query):
            raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one')

    def encode(self, query: str):
        if self.has_model:
            inputs = self.tokenizer(
                [query],
                max_length=64,
                padding='longest',
                truncation=True,
                add_special_tokens=True,
                return_tensors='pt'
            )
            inputs.to(self.device)
            embeddings = self.model(inputs["input_ids"]).detach().cpu().numpy()
            return embeddings.flatten()
        else:
            return super().encode(query)

    def prf_encode(self, query: str):
        if self.has_model:
            inputs = self.tokenizer(
                [query],
                max_length=512,
                padding='longest',
                truncation=True,
                add_special_tokens=False,
                return_tensors='pt'
            )
            inputs.to(self.device)
            embeddings = self.model(inputs["input_ids"]).detach().cpu().numpy()
            return embeddings.flatten()
        else:
            return super().encode(query)

    def prf_batch_encode(self, query: List[str]):
        inputs = self.tokenizer(
            query,
            max_length=512,
            padding='longest',
            truncation=True,
            add_special_tokens=False,
            return_tensors='pt'
        )
        inputs.to(self.device)
        embeddings = self.model(inputs["input_ids"]).detach().cpu().numpy()
        return embeddings


class AutoQueryEncoder(QueryEncoder):

    def __init__(self, encoder_dir: str = None, tokenizer_name: str = None,
                 encoded_query_dir: str = None, device: str = 'cpu',
                 pooling: str = 'cls', l2_norm: bool = False, **kwargs):
        super().__init__(encoded_query_dir)
        if encoder_dir:
            self.device = device
            self.model = AutoModel.from_pretrained(encoder_dir)
            self.model.to(self.device)
            try:
                self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name or encoder_dir)
            except:
                self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name or encoder_dir, use_fast=False)
            self.has_model = True
            self.pooling = pooling
            self.l2_norm = l2_norm
        if (not self.has_model) and (not self.has_encoded_query):
            raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one')

    @staticmethod
    def _mean_pooling(model_output, attention_mask):
        token_embeddings = model_output[0]  # First element of model_output contains all token embeddings
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
        sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
        return sum_embeddings / sum_mask

    def encode(self, query: str):
        if self.has_model:
            inputs = self.tokenizer(
                query,
                add_special_tokens=True,
                return_tensors='pt',
                truncation='only_first',
                padding='longest',
                return_token_type_ids=False,
            )

            inputs.to(self.device)
            outputs = self.model(**inputs)
            if self.pooling == "mean":
                embeddings = self._mean_pooling(outputs, inputs['attention_mask']).detach().cpu().numpy()
            else:
                embeddings = outputs[0][:, 0, :].detach().cpu().numpy()
            if self.l2_norm:
                faiss.normalize_L2(embeddings)
            return embeddings.flatten()
        else:
            return super().encode(query)


@dataclass
class DenseSearchResult:
    docid: str
    score: float


@dataclass
class PRFDenseSearchResult:
    docid: str
    score: float
    vectors: [float]


class FaissSearcher:
    """Simple Searcher for dense representation

    Parameters
    ----------
    index_dir : str
        Path to faiss index directory.
    """

    def __init__(self, index_dir: str, query_encoder: Union[QueryEncoder, str],
                 prebuilt_index_name: Optional[str] = None):
        requires_backends(self, "faiss")
        if isinstance(query_encoder, QueryEncoder) or isinstance(query_encoder, PcaEncoder):
            self.query_encoder = query_encoder
        else:
            self.query_encoder = self._init_encoder_from_str(query_encoder)
        self.index, self.docids = self.load_index(index_dir)
        self.dimension = self.index.d
        self.num_docs = self.index.ntotal

        assert self.docids is None or self.num_docs == len(self.docids)
        if prebuilt_index_name:
            sparse_index = get_sparse_index(prebuilt_index_name)
            self.ssearcher = LuceneSearcher.from_prebuilt_index(sparse_index)

    @classmethod
    def from_prebuilt_index(cls, prebuilt_index_name: str, query_encoder: QueryEncoder):
        """Build a searcher from a pre-built index; download the index if necessary.

        Parameters
        ----------
        query_encoder: QueryEncoder
            the query encoder, which has `encode` method that convert query text to embedding
        prebuilt_index_name : str
            Prebuilt index name.

        Returns
        -------
        FaissSearcher
            Searcher built from the prebuilt faiss index.
        """
        print(f'Attempting to initialize pre-built index {prebuilt_index_name}.')
        try:
            index_dir = download_prebuilt_index(prebuilt_index_name)
        except ValueError as e:
            print(str(e))
            return None

        print(f'Initializing {prebuilt_index_name}...')
        return cls(index_dir, query_encoder, prebuilt_index_name)

    @staticmethod
    def list_prebuilt_indexes():
        """Display information about available prebuilt indexes."""
        get_dense_indexes_info()

    def search(self, query: Union[str, np.ndarray], k: int = 10, threads: int = 1, return_vector: bool = False) \
            -> Union[List[DenseSearchResult], Tuple[np.ndarray, List[PRFDenseSearchResult]]]:
        """Search the collection.

        Parameters
        ----------
        query : Union[str, np.ndarray]
            query text or query embeddings
        k : int
            Number of hits to return.
        threads : int
            Maximum number of threads to use for intra-query search.
        return_vector : bool
            Return the results with vectors
        Returns
        -------
        Union[List[DenseSearchResult], Tuple[np.ndarray, List[PRFDenseSearchResult]]]
            Either returns a list of search results.
            Or returns the query vector with the list of PRF dense search results with vectors.
        """
        
        def encode_query():
            if isinstance(query, str):
                emb_q = self.query_encoder.encode(query)
                assert len(emb_q) == self.dimension
                emb_q = emb_q.reshape((1, len(emb_q)))
            else:
                emb_q = query
            return emb_q        
        emb_q = encode_query()
        
        def retrieve():
            faiss.omp_set_num_threads(threads)
            if return_vector:
                distances, indexes, vectors = self.index.search_and_reconstruct(emb_q, k)
                vectors = vectors[0]
                distances = distances.flat
                indexes = indexes.flat
                return emb_q, [PRFDenseSearchResult(self.docids[idx], score, vector)
                            for score, idx, vector in zip(distances, indexes, vectors) if idx != -1]
            else:
                distances, indexes = self.index.search(emb_q, k)
                distances = distances.flat
                indexes = indexes.flat
                return [DenseSearchResult(self.docids[idx], score)
                        for score, idx in zip(distances, indexes) if idx != -1]
        output = retrieve()
        return output

    def batch_search(self, queries: Union[List[str], np.ndarray], q_ids: List[str], k: int = 10,
                     threads: int = 1, return_vector: bool = False) \
            -> Union[Dict[str, List[DenseSearchResult]], Tuple[np.ndarray, Dict[str, List[PRFDenseSearchResult]]]]:
        """

        Parameters
        ----------
        queries : Union[List[str], np.ndarray]
            List of query texts or list of query embeddings
        q_ids : List[str]
            List of corresponding query ids.
        k : int
            Number of hits to return.
        threads : int
            Maximum number of threads to use.
        return_vector : bool
            Return the results with vectors

        Returns
        -------
        Union[Dict[str, List[DenseSearchResult]], Tuple[np.ndarray, Dict[str, List[PRFDenseSearchResult]]]]
            Either returns a dictionary holding the search results, with the query ids as keys and the
            corresponding lists of search results as the values.
            Or returns a tuple with ndarray of query vectors and a dictionary of PRF Dense Search Results with vectors
        """
        
        def encode_query_batch():
            if isinstance(queries, np.ndarray):
                q_embs = queries
            else:
                q_embs = np.array([self.query_encoder.encode(q) for q in queries])
                n, m = q_embs.shape
                assert m == self.dimension
            return q_embs
        q_embs = encode_query_batch()
        
        def retrieve_batch():            
            faiss.omp_set_num_threads(threads)
            if return_vector:
                D, I, V = self.index.search_and_reconstruct(q_embs, k)
                return q_embs, {key: [PRFDenseSearchResult(self.docids[idx], score, vector)
                                    for score, idx, vector in zip(distances, indexes, vectors) if idx != -1]
                                for key, distances, indexes, vectors in zip(q_ids, D, I, V)}
            else:
                D, I = self.index.search(q_embs, k)
                return {key: [DenseSearchResult(self.docids[idx], score)
                            for score, idx in zip(distances, indexes) if idx != -1]
                        for key, distances, indexes in zip(q_ids, D, I)}
        output = retrieve_batch()
        return output        

    def load_index(self, index_dir: str):
        index_path = os.path.join(index_dir, 'index')
        docid_path = os.path.join(index_dir, 'docid')
        index = faiss.read_index(index_path)
        docids = self.load_docids(docid_path)
        return index, docids

    def doc(self, docid: Union[str, int]) -> Optional[Document]:
        """Return the :class:`Document` corresponding to ``docid``. Since dense indexes don't store documents
        but sparse indexes do, route over to corresponding sparse index (according to prebuilt_index_info.py)
        and use its doc API 

        Parameters
        ----------
        docid : Union[str, int]
            Overloaded ``docid``: either an external collection ``docid`` (``str``) or an internal Lucene ``docid``
            (``int``).

        Returns
        -------
        Document
            :class:`Document` corresponding to the ``docid``.
        """
        return self.ssearcher.doc(docid) if self.ssearcher else None

    @staticmethod
    def _init_encoder_from_str(encoder):
        encoder_lower = encoder.lower()
        if 'dpr' in encoder_lower:
            return DprQueryEncoder(encoder_dir=encoder)
        elif 'tct_colbert' in encoder_lower:
            return TctColBertQueryEncoder(encoder_dir=encoder)
        elif 'ance' in encoder_lower:
            return AnceQueryEncoder(encoder_dir=encoder)
        elif 'sentence' in encoder_lower:
            return AutoQueryEncoder(encoder_dir=encoder, pooling='mean', l2_norm=True)
        else:
            return AutoQueryEncoder(encoder_dir=encoder)

    @staticmethod
    def load_docids(docid_path: str) -> List[str]:
        id_f = open(docid_path, 'r')
        docids = [line.rstrip() for line in id_f.readlines()]
        id_f.close()
        return docids
    
    def set_hnsw_ef_search(self, ef_search: int):
        self.index.hnsw.efSearch = ef_search


class BinaryDenseSearcher(FaissSearcher):
    """Simple Searcher for binary-dense representation

    Parameters
    ----------
    index_dir : str
        Path to faiss index directory.
    """

    def __init__(self, index_dir: str, query_encoder: Union[QueryEncoder, str],
                 prebuilt_index_name: Optional[str] = None):
        super().__init__(index_dir, query_encoder, prebuilt_index_name)

    def search(self, query: str, k: int = 10, binary_k: int = 100, rerank: bool = True, threads: int = 1) \
            -> List[DenseSearchResult]:
        """Search the collection.

        Parameters
        ----------
        query : str
            query text
        k : int
            Number of hits to return at second stage.
        binary_k : int
            Number of hits to return at first stage.
        rerank: bool
            Whether to use dense repr to rerank the binary ranking results.
        threads : int
            Maximum number of threads to use for intra-query search.
        Returns
        -------
        List[DenseSearchResult]
            List of search results.
        """


        ret = self.query_encoder.encode(query)
        dense_emb_q = ret['dense']
        sparse_emb_q = ret['sparse']
        assert len(dense_emb_q) == self.dimension
        assert len(sparse_emb_q) == self.dimension

        dense_emb_q = dense_emb_q.reshape((1, len(dense_emb_q)))
        sparse_emb_q = sparse_emb_q.reshape((1, len(sparse_emb_q)))
        faiss.omp_set_num_threads(threads)
        distances, indexes = self.binary_dense_search(k, binary_k, rerank, dense_emb_q, sparse_emb_q)
        distances = distances.flat
        indexes = indexes.flat
        return [DenseSearchResult(str(idx), score)
                for score, idx in zip(distances, indexes) if idx != -1]

    def batch_search(self, queries: List[str], q_ids: List[str], k: int = 10, binary_k: int = 100,
                     rerank: bool = True, threads: int = 1) -> Dict[str, List[DenseSearchResult]]:
        """

        Parameters
        ----------
        queries : List[str]
            List of query texts
        q_ids : List[str]
            List of corresponding query ids.
        k : int
            Number of hits to return.
        binary_k : int
            Number of hits to return at first stage.
        rerank: bool
            Whether to use dense repr to rerank the binary ranking results.
        threads : int
            Maximum number of threads to use.

        Returns
        -------
        Dict[str, List[DenseSearchResult]]
            Dictionary holding the search results, with the query ids as keys and the corresponding lists of search
            results as the values.
        """
        dense_q_embs = []
        sparse_q_embs = []
        for q in queries:
            ret = self.query_encoder.encode(q)
            dense_q_embs.append(ret['dense'])
            sparse_q_embs.append(ret['sparse'])
        dense_q_embs = np.array(dense_q_embs)
        sparse_q_embs = np.array(sparse_q_embs)
        n, m = dense_q_embs.shape
        assert m == self.dimension
        faiss.omp_set_num_threads(threads)
        D, I = self.binary_dense_search(k, binary_k, rerank, dense_q_embs, sparse_q_embs)
        return {key: [DenseSearchResult(str(idx), score)
                      for score, idx in zip(distances, indexes) if idx != -1]
                for key, distances, indexes in zip(q_ids, D, I)}

    def binary_dense_search(self, k, binary_k, rerank, dense_emb_q, sparse_emb_q):
        num_queries = dense_emb_q.shape[0]
        sparse_emb_q = np.packbits(np.where(sparse_emb_q > 0, 1, 0)).reshape(num_queries, -1)

        if not rerank:
            distances, indexes = self.index.search(sparse_emb_q, k)
        else:
            raw_index = self.index.index
            _, indexes = raw_index.search(sparse_emb_q, binary_k)
            sparse_emb_p = np.vstack(
                [np.unpackbits(raw_index.reconstruct(int(id_))) for id_ in indexes.reshape(-1)]
            )
            sparse_emb_p = sparse_emb_p.reshape(
                dense_emb_q.shape[0], binary_k, dense_emb_q.shape[1]
            )
            sparse_emb_p = sparse_emb_p.astype(np.float32)
            sparse_emb_p = sparse_emb_p * 2 - 1
            distances = np.einsum("ijk,ik->ij", sparse_emb_p, dense_emb_q)
            sorted_indices = np.argsort(-distances, axis=1)

            indexes = indexes[np.arange(num_queries)[:, None], sorted_indices]
            indexes = np.array([self.index.id_map.at(int(id_)) for id_ in indexes.reshape(-1)], dtype=np.int)
            indexes = indexes.reshape(num_queries, -1)[:, :k]
            distances = distances[np.arange(num_queries)[:, None], sorted_indices][:, :k]
        return distances, indexes

    def load_index(self, index_dir: str):
        index_path = os.path.join(index_dir, 'index')
        index = faiss.read_index_binary(index_path)
        return index, None

    @staticmethod
    def _init_encoder_from_str(encoder):
        encoder = encoder.lower()
        if 'bpr' in encoder:
            return BprQueryEncoder(encoder_dir=encoder)
        else:
            raise NotImplementedError