File size: 8,439 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import heapq
import json
import os
import shutil
import tarfile
import unittest
from random import randint
from urllib.request import urlretrieve

from pyserini import analysis, search
from pyserini.index.lucene import IndexReader


class TestIndexUtilsForLucene8(unittest.TestCase):
    # This class contains the test cases from test_index_reader that require Lucene 8 backwards compatibility.
    def setUp(self):
        # Download pre-built CACM index built using Lucene 8; append a random value to avoid filename clashes.
        r = randint(0, 10000000)
        self.collection_url = 'https://github.com/castorini/anserini-data/raw/master/CACM/lucene8-index.cacm.tar.gz'
        self.tarball_name = 'lucene-index.cacm-{}.tar.gz'.format(r)
        self.index_dir = 'index{}/'.format(r)

        _, _ = urlretrieve(self.collection_url, self.tarball_name)

        tarball = tarfile.open(self.tarball_name)
        tarball.extractall(self.index_dir)
        tarball.close()

        self.index_path = os.path.join(self.index_dir, 'lucene-index.cacm')
        self.searcher = search.LuceneSearcher(self.index_path)
        self.index_reader = IndexReader(self.index_path)

        self.temp_folders = []

    def test_query_doc_score_default(self):
        queries = ['information retrieval', 'databases']

        for query in queries:
            hits = self.searcher.search(query)

            # We're going to verify that the score of each hit is about the same as the output of
            # compute_query_document_score
            for i in range(0, len(hits)):
                self.assertAlmostEqual(hits[i].score,
                                       self.index_reader.compute_query_document_score(hits[i].docid, query), places=4)

    def test_query_doc_score_custom_similarity(self):
        custom_bm25 = search.LuceneSimilarities.bm25(0.8, 0.2)
        queries = ['information retrieval', 'databases']
        self.searcher.set_bm25(0.8, 0.2)

        for query in queries:
            hits = self.searcher.search(query)

            # We're going to verify that the score of each hit is about the same as the output of
            # compute_query_document_score
            for i in range(0, len(hits)):
                self.assertAlmostEqual(hits[i].score,
                                       self.index_reader.compute_query_document_score(
                                           hits[i].docid, query, similarity=custom_bm25), places=4)

        custom_qld = search.LuceneSimilarities.qld(500)
        self.searcher.set_qld(500)

        for query in queries:
            hits = self.searcher.search(query)

            # We're going to verify that the score of each hit is about the same as the output of
            # compute_query_document_score
            for i in range(0, len(hits)):
                self.assertAlmostEqual(hits[i].score,
                                       self.index_reader.compute_query_document_score(
                                           hits[i].docid, query, similarity=custom_qld), places=4)

    def test_dump_documents_BM25(self):
        file_path = 'collections/cacm_documents_bm25_dump.jsonl'
        self.index_reader.dump_documents_BM25(file_path)
        dump_file = open(file_path, 'r')

        num_lines = sum(1 for line in dump_file)
        dump_file.seek(0)
        assert num_lines == self.index_reader.stats()['documents']

        def compare_searcher(query):
            """Comparing searching with LuceneSearcher to brute-force searching through documents in dump
            The scores should match.

            Parameters
            ----------
            query : str
                The query for search.
            """
            # Search through documents BM25 dump
            query_terms = self.index_reader.analyze(query, analyzer=analysis.get_lucene_analyzer())
            heap = [] # heapq implements a min-heap, we can invert the values to have a max-heap

            for line in dump_file:
                doc = json.loads(line)
                score = 0
                for term in query_terms:
                    if term in doc['vector']:
                        score += doc['vector'][term]
                heapq.heappush(heap, (-1*score, doc['id']))
            dump_file.seek(0)

            # Using LuceneSearcher instead
            hits = self.searcher.search(query)

            for i in range(0, 10):
                top = heapq.heappop(heap)
                self.assertEqual(hits[i].docid, top[1])
                self.assertAlmostEqual(hits[i].score, -1*top[0], places=3)

        compare_searcher('I am interested in articles written either by Prieve or Udo Pooch')
        compare_searcher('Performance evaluation and modelling of computer systems')
        compare_searcher('Addressing schemes for resources in networks; resource addressing in network operating systems')

        dump_file.close()
        os.remove(file_path)

    def test_quantize_weights(self):
        dump_file_path = 'collections/cacm_documents_bm25_dump.jsonl'
        quantized_file_path = 'collections/cacm_documents_bm25_dump_quantized.jsonl'
        self.index_reader.dump_documents_BM25(dump_file_path)
        self.index_reader.quantize_weights(dump_file_path, quantized_file_path)

        quantized_weights_file = open(quantized_file_path, 'r')

        num_lines = sum(1 for line in quantized_weights_file)
        quantized_weights_file.seek(0)
        assert num_lines == self.index_reader.stats()['documents']

        def compare_searcher_quantized(query, tolerance=1):
            """Comparing searching with LuceneSearcher to brute-force searching through documents in dump
            If the weights are quantized the scores will not match but the rankings should still roughly match.

            Parameters
            ----------
            query : str
                The query for search.
            tolerance : int
                Number of places within which rankings should match i.e. if the ranking of some document with
                searching through documents in the dump is 2, then with a tolerance of 1 the ranking of the same
                document with Lucene searcher should be between 1-3.
            """
            query_terms = self.index_reader.analyze(query, analyzer=analysis.get_lucene_analyzer())
            heap = []
            for line in quantized_weights_file:
                doc = json.loads(line)
                score = 0
                for term in query_terms:
                    if term in doc['vector']:
                        score += doc['vector'][term]
                heapq.heappush(heap, (-1*score, doc['id']))
            quantized_weights_file.seek(0)

            hits = self.searcher.search(query)

            for i in range(0, 10):
                top = heapq.heappop(heap)
                match_within_tolerance = False
                for j in range(tolerance+1):
                    match_within_tolerance = (i-j >= 0 and hits[i-j].docid == top[1]) or (hits[i+j].docid == top[1])
                    if match_within_tolerance:
                        break
                self.assertEqual(match_within_tolerance, True)

        compare_searcher_quantized('I am interested in articles written either by Prieve or Udo Pooch')
        compare_searcher_quantized('Performance evaluation and modelling of computer systems')
        compare_searcher_quantized('Addressing schemes for resources in networks; resource addressing in network operating systems')

        quantized_weights_file.close()
        os.remove(quantized_file_path)

    def tearDown(self):
        os.remove(self.tarball_name)
        shutil.rmtree(self.index_dir)
        for f in self.temp_folders:
            shutil.rmtree(f)


if __name__ == '__main__':
    unittest.main()