File size: 8,550 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import json
import os
import sys

from tqdm import tqdm

from pyserini.search.faiss import FaissSearcher
from pyserini.query_iterator import get_query_iterator, TopicsFormat
from pyserini.output_writer import get_output_writer, OutputFormat
from pyserini.search.lucene import LuceneImpactSearcher, LuceneSearcher
from pyserini.search.hybrid import HybridSearcher

from pyserini.search.faiss.__main__ import define_dsearch_args, init_query_encoder
from pyserini.search.lucene.__main__ import define_search_args, set_bm25_parameters

# Fixes this error: "OMP: Error #15: Initializing libomp.a, but found libomp.dylib already initialized."
# https://stackoverflow.com/questions/53014306/error-15-initializing-libiomp5-dylib-but-found-libiomp5-dylib-already-initial
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'


def define_fusion_args(parser):
    parser.add_argument('--alpha', type=float, metavar='num', required=False, default=0.1,
                        help="alpha for hybrid search")
    parser.add_argument('--hits', type=int, required=False, default=1000, help='number of hits from dense and sparse')
    parser.add_argument('--normalization', action='store_true', required=False, help='hybrid score with normalization')
    parser.add_argument('--weight-on-dense', action='store_true', required=False, help='weight on dense part')


def parse_args(parser, commands):
    # Divide argv by commands
    split_argv = [[]]
    for c in sys.argv[1:]:
        if c in commands.choices:
            split_argv.append([c])
        else:
            split_argv[-1].append(c)
    # Initialize namespace
    args = argparse.Namespace()
    for c in commands.choices:
        setattr(args, c, None)
    # Parse each command
    parser.parse_args(split_argv[0], namespace=args)  # Without command
    for argv in split_argv[1:]:  # Commands
        n = argparse.Namespace()
        setattr(args, argv[0], n)
        parser.parse_args(argv, namespace=n)
    return args


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Conduct a hybrid search on dense+sparse indexes.')

    commands = parser.add_subparsers(title='sub-commands')

    dense_parser = commands.add_parser('dense')
    define_dsearch_args(dense_parser)

    sparse_parser = commands.add_parser('sparse')
    define_search_args(sparse_parser)

    fusion_parser = commands.add_parser('fusion')
    define_fusion_args(fusion_parser)

    run_parser = commands.add_parser('run')
    run_parser.add_argument('--topics', type=str, metavar='topic_name', required=False,
                            help="Name of topics. Available: msmarco-passage-dev-subset.")
    run_parser.add_argument('--hits', type=int, metavar='num', required=False, default=1000, help="Number of hits.")
    run_parser.add_argument('--topics-format', type=str, metavar='format', default=TopicsFormat.DEFAULT.value,
                            help=f"Format of topics. Available: {[x.value for x in list(TopicsFormat)]}")
    run_parser.add_argument('--output-format', type=str, metavar='format', default=OutputFormat.TREC.value,
                            help=f"Format of output. Available: {[x.value for x in list(OutputFormat)]}")
    run_parser.add_argument('--output', type=str, metavar='path', required=False, help="Path to output file.")
    run_parser.add_argument('--max-passage', action='store_true',
                            default=False, help="Select only max passage from document.")
    run_parser.add_argument('--max-passage-hits', type=int, metavar='num', required=False, default=100,
                            help="Final number of hits when selecting only max passage.")
    run_parser.add_argument('--max-passage-delimiter', type=str, metavar='str', required=False, default='#',
                            help="Delimiter between docid and passage id.")
    run_parser.add_argument('--batch-size', type=int, metavar='num', required=False,
                            default=1, help="Specify batch size to search the collection concurrently.")
    run_parser.add_argument('--threads', type=int, metavar='num', required=False,
                            default=1, help="Maximum number of threads to use.")

    args = parse_args(parser, commands)

    query_iterator = get_query_iterator(args.run.topics, TopicsFormat(args.run.topics_format))
    topics = query_iterator.topics

    query_encoder = init_query_encoder(args.dense.encoder,
                                       args.dense.encoder_class,
                                       args.dense.tokenizer,
                                       args.run.topics,
                                       args.dense.encoded_queries,
                                       args.dense.device,
                                       args.dense.query_prefix)

    if os.path.exists(args.dense.index):
        # create searcher from index directory
        dsearcher = FaissSearcher(args.dense.index, query_encoder)
    else:
        # create searcher from prebuilt index name
        dsearcher = FaissSearcher.from_prebuilt_index(args.dense.index, query_encoder)

    if not dsearcher:
        exit()

    if os.path.exists(args.sparse.index):
        # create searcher from index directory
        if args.sparse.impact:
            ssearcher = LuceneImpactSearcher(args.sparse.index, args.sparse.encoder, args.sparse.min_idf)
        else:
            ssearcher = LuceneSearcher(args.sparse.index)
    else:
        # create searcher from prebuilt index name
        if args.sparse.impact:
            ssearcher = LuceneImpactSearcher.from_prebuilt_index(args.sparse.index, args.sparse.encoder, args.sparse.min_idf)
        else:
            ssearcher = LuceneSearcher.from_prebuilt_index(args.sparse.index)

    if not ssearcher:
        exit()

    set_bm25_parameters(ssearcher, args.sparse.index, args.sparse.k1, args.sparse.b)

    if args.sparse.language != 'en':
        ssearcher.set_language(args.sparse.language)

    hsearcher = HybridSearcher(dsearcher, ssearcher)
    if not hsearcher:
        exit()

    # build output path
    output_path = args.run.output

    print(f'Running {args.run.topics} topics, saving to {output_path}...')
    tag = 'hybrid'

    output_writer = get_output_writer(output_path, OutputFormat(args.run.output_format), 'w',
                                      max_hits=args.run.hits, tag=tag, topics=topics,
                                      use_max_passage=args.run.max_passage,
                                      max_passage_delimiter=args.run.max_passage_delimiter,
                                      max_passage_hits=args.run.max_passage_hits)

    with output_writer:
        batch_topics = list()
        batch_topic_ids = list()
        for index, (topic_id, text) in enumerate(tqdm(query_iterator, total=len(topics.keys()))):
            if args.run.batch_size <= 1 and args.run.threads <= 1:
                hits = hsearcher.search(text, args.fusion.hits, args.run.hits, args.fusion.alpha, args.fusion.normalization, args.fusion.weight_on_dense)
                results = [(topic_id, hits)]
            else:
                batch_topic_ids.append(str(topic_id))
                batch_topics.append(text)
                if (index + 1) % args.run.batch_size == 0 or \
                        index == len(topics.keys()) - 1:
                    results = hsearcher.batch_search(
                        batch_topics, batch_topic_ids, args.fusion.hits, args.run.hits, args.run.threads,
                        args.fusion.alpha, args.fusion.normalization, args.fusion.weight_on_dense)
                    results = [(id_, results[id_]) for id_ in batch_topic_ids]
                    batch_topic_ids.clear()
                    batch_topics.clear()
                else:
                    continue

            for topic, hits in results:
                output_writer.write(topic, hits)

            results.clear()