Spaces:
Runtime error
Runtime error
File size: 8,550 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import os
import sys
from tqdm import tqdm
from pyserini.search.faiss import FaissSearcher
from pyserini.query_iterator import get_query_iterator, TopicsFormat
from pyserini.output_writer import get_output_writer, OutputFormat
from pyserini.search.lucene import LuceneImpactSearcher, LuceneSearcher
from pyserini.search.hybrid import HybridSearcher
from pyserini.search.faiss.__main__ import define_dsearch_args, init_query_encoder
from pyserini.search.lucene.__main__ import define_search_args, set_bm25_parameters
# Fixes this error: "OMP: Error #15: Initializing libomp.a, but found libomp.dylib already initialized."
# https://stackoverflow.com/questions/53014306/error-15-initializing-libiomp5-dylib-but-found-libiomp5-dylib-already-initial
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def define_fusion_args(parser):
parser.add_argument('--alpha', type=float, metavar='num', required=False, default=0.1,
help="alpha for hybrid search")
parser.add_argument('--hits', type=int, required=False, default=1000, help='number of hits from dense and sparse')
parser.add_argument('--normalization', action='store_true', required=False, help='hybrid score with normalization')
parser.add_argument('--weight-on-dense', action='store_true', required=False, help='weight on dense part')
def parse_args(parser, commands):
# Divide argv by commands
split_argv = [[]]
for c in sys.argv[1:]:
if c in commands.choices:
split_argv.append([c])
else:
split_argv[-1].append(c)
# Initialize namespace
args = argparse.Namespace()
for c in commands.choices:
setattr(args, c, None)
# Parse each command
parser.parse_args(split_argv[0], namespace=args) # Without command
for argv in split_argv[1:]: # Commands
n = argparse.Namespace()
setattr(args, argv[0], n)
parser.parse_args(argv, namespace=n)
return args
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Conduct a hybrid search on dense+sparse indexes.')
commands = parser.add_subparsers(title='sub-commands')
dense_parser = commands.add_parser('dense')
define_dsearch_args(dense_parser)
sparse_parser = commands.add_parser('sparse')
define_search_args(sparse_parser)
fusion_parser = commands.add_parser('fusion')
define_fusion_args(fusion_parser)
run_parser = commands.add_parser('run')
run_parser.add_argument('--topics', type=str, metavar='topic_name', required=False,
help="Name of topics. Available: msmarco-passage-dev-subset.")
run_parser.add_argument('--hits', type=int, metavar='num', required=False, default=1000, help="Number of hits.")
run_parser.add_argument('--topics-format', type=str, metavar='format', default=TopicsFormat.DEFAULT.value,
help=f"Format of topics. Available: {[x.value for x in list(TopicsFormat)]}")
run_parser.add_argument('--output-format', type=str, metavar='format', default=OutputFormat.TREC.value,
help=f"Format of output. Available: {[x.value for x in list(OutputFormat)]}")
run_parser.add_argument('--output', type=str, metavar='path', required=False, help="Path to output file.")
run_parser.add_argument('--max-passage', action='store_true',
default=False, help="Select only max passage from document.")
run_parser.add_argument('--max-passage-hits', type=int, metavar='num', required=False, default=100,
help="Final number of hits when selecting only max passage.")
run_parser.add_argument('--max-passage-delimiter', type=str, metavar='str', required=False, default='#',
help="Delimiter between docid and passage id.")
run_parser.add_argument('--batch-size', type=int, metavar='num', required=False,
default=1, help="Specify batch size to search the collection concurrently.")
run_parser.add_argument('--threads', type=int, metavar='num', required=False,
default=1, help="Maximum number of threads to use.")
args = parse_args(parser, commands)
query_iterator = get_query_iterator(args.run.topics, TopicsFormat(args.run.topics_format))
topics = query_iterator.topics
query_encoder = init_query_encoder(args.dense.encoder,
args.dense.encoder_class,
args.dense.tokenizer,
args.run.topics,
args.dense.encoded_queries,
args.dense.device,
args.dense.query_prefix)
if os.path.exists(args.dense.index):
# create searcher from index directory
dsearcher = FaissSearcher(args.dense.index, query_encoder)
else:
# create searcher from prebuilt index name
dsearcher = FaissSearcher.from_prebuilt_index(args.dense.index, query_encoder)
if not dsearcher:
exit()
if os.path.exists(args.sparse.index):
# create searcher from index directory
if args.sparse.impact:
ssearcher = LuceneImpactSearcher(args.sparse.index, args.sparse.encoder, args.sparse.min_idf)
else:
ssearcher = LuceneSearcher(args.sparse.index)
else:
# create searcher from prebuilt index name
if args.sparse.impact:
ssearcher = LuceneImpactSearcher.from_prebuilt_index(args.sparse.index, args.sparse.encoder, args.sparse.min_idf)
else:
ssearcher = LuceneSearcher.from_prebuilt_index(args.sparse.index)
if not ssearcher:
exit()
set_bm25_parameters(ssearcher, args.sparse.index, args.sparse.k1, args.sparse.b)
if args.sparse.language != 'en':
ssearcher.set_language(args.sparse.language)
hsearcher = HybridSearcher(dsearcher, ssearcher)
if not hsearcher:
exit()
# build output path
output_path = args.run.output
print(f'Running {args.run.topics} topics, saving to {output_path}...')
tag = 'hybrid'
output_writer = get_output_writer(output_path, OutputFormat(args.run.output_format), 'w',
max_hits=args.run.hits, tag=tag, topics=topics,
use_max_passage=args.run.max_passage,
max_passage_delimiter=args.run.max_passage_delimiter,
max_passage_hits=args.run.max_passage_hits)
with output_writer:
batch_topics = list()
batch_topic_ids = list()
for index, (topic_id, text) in enumerate(tqdm(query_iterator, total=len(topics.keys()))):
if args.run.batch_size <= 1 and args.run.threads <= 1:
hits = hsearcher.search(text, args.fusion.hits, args.run.hits, args.fusion.alpha, args.fusion.normalization, args.fusion.weight_on_dense)
results = [(topic_id, hits)]
else:
batch_topic_ids.append(str(topic_id))
batch_topics.append(text)
if (index + 1) % args.run.batch_size == 0 or \
index == len(topics.keys()) - 1:
results = hsearcher.batch_search(
batch_topics, batch_topic_ids, args.fusion.hits, args.run.hits, args.run.threads,
args.fusion.alpha, args.fusion.normalization, args.fusion.weight_on_dense)
results = [(id_, results[id_]) for id_ in batch_topic_ids]
batch_topic_ids.clear()
batch_topics.clear()
else:
continue
for topic, hits in results:
output_writer.write(topic, hits)
results.clear()
|