Spaces:
Runtime error
Runtime error
File size: 21,982 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This module provides Pyserini's Python interface for raw access to Lucene indexes built by Anserini. The main entry
point is the ``IndexReaderUtils`` class, which wraps the Java class with the same name in Anserini. Many of the classes
and methods provided are meant only to provide tools for examining an index and are not optimized for computing over.
"""
import logging
from enum import Enum
from typing import Dict, Iterator, List, Optional, Tuple
from tqdm import tqdm
import json
import math
from pyserini.analysis import get_lucene_analyzer, JAnalyzer, JAnalyzerUtils
from pyserini.pyclass import autoclass
from pyserini.util import download_prebuilt_index, get_sparse_indexes_info
from pyserini.prebuilt_index_info import TF_INDEX_INFO, IMPACT_INDEX_INFO
logger = logging.getLogger(__name__)
# Wrappers around Anserini classes
JDocument = autoclass('org.apache.lucene.document.Document')
JIndexReader = autoclass('io.anserini.index.IndexReaderUtils')
class JIndexHelpers:
@staticmethod
def JArgs():
args = autoclass('io.anserini.index.IndexCollection$Args')()
args.storeContents = True
args.storeRaw = True
args.dryRun = True ## So that indexing will be skipped
return args
@staticmethod
def JCounters():
IndexCollection = autoclass('io.anserini.index.IndexCollection')
Counters = autoclass('io.anserini.index.IndexCollection$Counters')
return Counters(IndexCollection)
class Document:
"""Wrapper class for a Lucene ``Document``.
Parameters
----------
document : JDocument
Underlying Lucene ``Document``.
"""
def __init__(self, document):
if document is None:
raise ValueError('Cannot create a Document with None.')
self.object = document
def docid(self: JDocument) -> str:
return self.object.getField('id').stringValue()
def id(self: JDocument) -> str:
# Convenient alias for docid()
return self.object.getField('id').stringValue()
def lucene_document(self: JDocument) -> JDocument:
return self.object
def contents(self: JDocument) -> str:
return self.object.get('contents')
def raw(self: JDocument) -> str:
return self.object.get('raw')
def get(self: JDocument, field: str) -> str:
return self.object.get(field)
class JGenerators(Enum):
AclAnthologyGenerator = autoclass('io.anserini.index.generator.AclAnthologyGenerator')
DefaultLuceneDocumentGenerator = autoclass('io.anserini.index.generator.DefaultLuceneDocumentGenerator')
TweetGenerator = autoclass('io.anserini.index.generator.TweetGenerator')
WashingtonPostGenerator = autoclass('io.anserini.index.generator.WashingtonPostGenerator')
class Generator:
"""Wrapper class for Anserini's generators.
Parameters
----------
generator_class : str
Name of generator class to instantiate
"""
def __init__(self, generator_class):
self.counters = JIndexHelpers.JCounters()
self.args = JIndexHelpers.JArgs()
self.generator_class = generator_class
self.object = self._get_generator()
def _get_generator(self):
try:
return JGenerators[self.generator_class].value(self.args)
except:
raise ValueError(self.generator_class)
def create_document(self, document):
"""
Parameters
----------
document : pyserini.collection.pycollection.Document
Collection document to create Lucene document from
Returns
-------
result : org.apache.lucene.document.Document
Lucene document generated
"""
return self.object.createDocument(document.object)
class IndexTerm:
"""Class representing an analyzed term in an index with associated statistics.
Parameters
----------
term : str
Analyzed term.
df : int
Document frequency, the number of documents in the collection that contains the term.
cf : int
Collection frequency, the number of times the term occurs in the entire collection. This value is equal to the
sum of all the term frequencies of the term across all documents in the collection.
"""
def __init__(self, term, df, cf):
self.term = term
self.df = df
self.cf = cf
class Posting:
"""Class representing a posting in a postings list.
Parameters
----------
docid : int
Collection ``docid``.
tf : int
Term frequency.
positions : List[int]
List of positions.
"""
def __init__(self, docid, tf, positions):
self.docid = docid
self.tf = tf
self.positions = positions
def __repr__(self):
repr = '(' + str(self.docid) + ', ' + str(self.tf) + ')'
if self.positions:
repr += ' [' + ','.join([str(p) for p in self.positions]) + ']'
return repr
class IndexReader:
"""Wrapper class for ``IndexReaderUtils`` in Anserini.
Parameters
----------
index_dir : str
Path to Lucene index directory.
"""
def __init__(self, index_dir):
self.object = JIndexReader()
self.reader = self.object.getReader(index_dir)
@classmethod
def from_prebuilt_index(cls, prebuilt_index_name: str, verbose=False):
"""Build an index reader from a prebuilt index; download the index if necessary.
Parameters
----------
prebuilt_index_name : str
Prebuilt index name.
verbose : bool
Print status information.
Returns
-------
IndexReader
Index reader built from the prebuilt index.
"""
if verbose:
print(f'Attempting to initialize pre-built index {prebuilt_index_name}.')
try:
index_dir = download_prebuilt_index(prebuilt_index_name, verbose=verbose)
except ValueError as e:
print(str(e))
return None
if verbose:
print(f'Initializing {prebuilt_index_name}...')
index_reader = cls(index_dir)
# Validate index stats; will throw exception there are any issues.
index_reader.validate(prebuilt_index_name, verbose=verbose)
return index_reader
@staticmethod
def list_prebuilt_indexes():
"""Display information about available prebuilt indexes."""
get_sparse_indexes_info()
def analyze(self, text: str, analyzer=None) -> List[str]:
"""Analyze a piece of text. Applies Anserini's default Lucene analyzer if analyzer not specified.
Parameters
----------
text : str
Text to analyze.
analyzer : analyzer
Analyzer to apply.
Returns
-------
List[str]
List of tokens corresponding to the output of the analyzer.
"""
if analyzer is None:
results = JAnalyzerUtils.analyze(text)
else:
results = JAnalyzerUtils.analyze(analyzer, text)
tokens = []
for token in results.toArray():
tokens.append(token)
return tokens
def validate(self, prebuilt_index_name: str, verbose=False):
"""Validate this index against stored stats for a pre-built index."""
stats = self.stats()
if prebuilt_index_name in TF_INDEX_INFO:
if stats['documents'] != TF_INDEX_INFO[prebuilt_index_name]['documents']:
raise ValueError('Pre-built index fails consistency check: "documents" does not match!')
if stats['unique_terms'] != TF_INDEX_INFO[prebuilt_index_name]['unique_terms']:
raise ValueError('Pre-built index fails consistency check: "unique_terms" does not match!')
if stats['total_terms'] != TF_INDEX_INFO[prebuilt_index_name]['total_terms']:
raise ValueError('Pre-built index fails consistency check: "total_terms" does not match!')
elif prebuilt_index_name in IMPACT_INDEX_INFO:
if stats['documents'] != IMPACT_INDEX_INFO[prebuilt_index_name]['documents']:
raise ValueError('Pre-built index fails consistency check: "documents" does not match!')
if stats['unique_terms'] != IMPACT_INDEX_INFO[prebuilt_index_name]['unique_terms']:
raise ValueError('Pre-built index fails consistency check: "unique_terms" does not match!')
if stats['total_terms'] != IMPACT_INDEX_INFO[prebuilt_index_name]['total_terms']:
raise ValueError('Pre-built index fails consistency check: "total_terms" does not match!')
else:
print(f'Unknown pre-built index \'{prebuilt_index_name}\'!')
return False
if verbose:
print(stats)
print(f'Index passes consistency checks against pre-built index \'{prebuilt_index_name}\'!')
return True
def terms(self) -> Iterator[IndexTerm]:
"""Return an iterator over analyzed terms in the index.
Returns
-------
Iterator[IndexTerm]
Iterator over :class:`IndexTerm` objects corresponding to (analyzed) terms in the index.
"""
term_iterator = self.object.getTerms(self.reader)
while term_iterator.hasNext():
cur_term = term_iterator.next()
yield IndexTerm(cur_term.getTerm(), cur_term.getDF(), cur_term.getTotalTF())
def get_term_counts(self, term: str, analyzer: Optional[JAnalyzer] = get_lucene_analyzer()) -> Tuple[int, int]:
"""Return the document frequency and collection frequency of a term. Applies Anserini's default Lucene
``Analyzer`` if analyzer is not specified.
Parameters
----------
term : str
Unanalyzed term.
analyzer : analyzer
Analyzer to apply.
Returns
-------
Tuple[int, int]
Document frequency and collection frequency.
"""
if analyzer is None:
analyzer = get_lucene_analyzer(stemming=False, stopwords=False)
term_map = self.object.getTermCountsWithAnalyzer(self.reader, term, analyzer)
return term_map.get('docFreq'), term_map.get('collectionFreq')
def get_postings_list(self, term: str, analyzer=get_lucene_analyzer()) -> List[Posting]:
"""Return the postings list for a term.
Parameters
----------
term : str
Raw term.
analyzer : analyzer
Analyzer to apply. Defaults to Anserini's default.
Returns
-------
List[Posting]
List of :class:`Posting` objects corresponding to the postings list for the term.
"""
if analyzer is None:
postings_list = self.object.getPostingsListForAnalyzedTerm(self.reader, term)
else:
postings_list = self.object.getPostingsListWithAnalyzer(self.reader, term,
analyzer)
if postings_list is None:
return None
result = []
for posting in postings_list.toArray():
result.append(Posting(posting.getDocid(), posting.getTF(), posting.getPositions()))
return result
def get_document_vector(self, docid: str) -> Optional[Dict[str, int]]:
"""Return the document vector for a ``docid``. Note that requesting the document vector of a ``docid`` that
does not exist in the index will return ``None`` (as opposed to an empty dictionary); this forces the caller
to handle ``None`` explicitly and guards against silent errors.
Parameters
----------
docid : str
Collection ``docid``.
Returns
-------
Optional[Dict[str, int]]
A dictionary with analyzed terms as keys and their term frequencies as values.
"""
doc_vector_map = self.object.getDocumentVector(self.reader, docid)
if doc_vector_map is None:
return None
doc_vector_dict = {}
for term in doc_vector_map.keySet().toArray():
doc_vector_dict[term] = doc_vector_map.get(term)
return doc_vector_dict
def get_term_positions(self, docid: str) -> Optional[Dict[str, int]]:
"""Return the term position mapping of the document with ``docid``. Note that the term in the document is
stemmed and stop words may be removed according to your index settings. Also, requesting the document vector of
a ``docid`` that does not exist in the index will return ``None`` (as opposed to an empty dictionary); this
forces the caller to handle ``None`` explicitly and guards against silent errors.
Parameters
----------
docid : str
Collection ``docid``.
Returns
-------
Optional[Dict[str, int]]
A tuple contains a dictionary with analyzed terms as keys and corresponding posting list as values
"""
java_term_position_map = self.object.getTermPositions(self.reader, docid)
if java_term_position_map is None:
return None
term_position_map = {}
for term in java_term_position_map.keySet().toArray():
term_position_map[term] = java_term_position_map.get(term).toArray()
return term_position_map
def doc(self, docid: str) -> Optional[Document]:
"""Return the :class:`Document` corresponding to ``docid``. Returns ``None`` if the ``docid`` does not exist
in the index.
Parameters
----------
docid : str
The collection ``docid``.
Returns
-------
Optional[Document]
:class:`Document` corresponding to the ``docid``.
"""
lucene_document = self.object.document(self.reader, docid)
if lucene_document is None:
return None
return Document(lucene_document)
def doc_by_field(self, field: str, q: str) -> Optional[Document]:
"""Return the :class:`Document` based on a ``field`` with ``id``. For example, this method can be used to fetch
document based on alternative primary keys that have been indexed, such as an article's DOI.
Parameters
----------
field : str
The field to look up.
q : str
The document's unique id.
Returns
-------
Optional[Document]
:class:`Document` whose ``field`` is ``id``.
"""
lucene_document = self.object.documentByField(self.reader, field, q)
if lucene_document is None:
return None
return Document(lucene_document)
def doc_raw(self, docid: str) -> Optional[str]:
"""Return the raw document contents for a collection ``docid``.
Parameters
----------
docid : str
Collection ``docid``.
Returns
-------
Optional[str]
Raw document contents.
"""
return self.object.documentRaw(self.reader, docid)
def doc_contents(self, docid: str) -> Optional[str]:
"""Return the indexed document contents for a collection ``docid``.
Parameters
----------
docid : str
The collection ``docid``.
Returns
-------
Optional[str]
Index document contents.
"""
return self.object.documentContents(self.reader, docid)
def compute_bm25_term_weight(self, docid: str, term: str, analyzer=get_lucene_analyzer(), k1=0.9, b=0.4) -> float:
"""Compute the BM25 weight of a term in a document. Specify ``analyzer=None`` for an already analyzed term,
e.g., from the output of :func:`get_document_vector`.
Parameters
----------
docid : str
Collection ``docid``.
term : str
Term.
analyzer : analyzer
Lucene analyzer to use, ``None`` if term is already analyzed.
k1 : float
BM25 k1 parameter.
b : float
BM25 b parameter.
Returns
-------
float
BM25 weight of the term in the document, or 0 if the term does not exist in the document.
"""
if analyzer is None:
return self.object.getBM25AnalyzedTermWeightWithParameters(self.reader, docid,
term,
float(k1), float(b))
else:
return self.object.getBM25UnanalyzedTermWeightWithParameters(self.reader, docid,
term, analyzer,
float(k1), float(b))
def compute_query_document_score(self, docid: str, query: str, similarity=None):
if similarity is None:
return self.object.computeQueryDocumentScore(self.reader, docid, query)
else:
return self.object.computeQueryDocumentScoreWithSimilarity(self.reader, docid, query, similarity)
def convert_internal_docid_to_collection_docid(self, docid: int) -> str:
"""Convert Lucene's internal ``docid`` to its external collection ``docid``.
Parameters
----------
docid : int
Lucene internal ``docid``.
Returns
-------
str
External collection ``docid`` corresponding to Lucene's internal ``docid``.
"""
return self.object.convertLuceneDocidToDocid(self.reader, docid)
def convert_collection_docid_to_internal_docid(self, docid: str) -> int:
"""Convert external collection ``docid`` to its Lucene's internal ``docid``.
Parameters
----------
docid : str
External collection ``docid``.
Returns
-------
str
Lucene internal ``docid`` corresponding to the external collection ``docid``.
"""
return self.object.convertDocidToLuceneDocid(self.reader, docid)
def stats(self) -> Dict[str, int]:
"""Return dictionary with index statistics.
Returns
-------
Dict[str, int]
Index statistics as a dictionary of statistic's name to statistic.
- documents: number of documents
- non_empty_documents: number of non-empty documents
- unique_terms: number of unique terms
- total_terms: number of total terms
"""
index_stats_map = self.object.getIndexStats(self.reader)
if index_stats_map is None:
return None
index_stats_dict = {}
for term in index_stats_map.keySet().toArray():
index_stats_dict[term] = index_stats_map.get(term)
return index_stats_dict
def dump_documents_BM25(self, file_path, k1=0.9, b=0.4):
"""Dumps out all the document vectors with BM25 weights in Pyserini's JSONL vector format.
Parameters
----------
file_path : str
File path to dump JSONL file.
k1 : float
BM25 k1 parameter.
b : float
BM25 b parameter.
"""
f = open(file_path, 'w')
assert 'documents' in self.stats()
for i in tqdm(range(self.stats()['documents'])):
docid = self.convert_internal_docid_to_collection_docid(i)
bm25_vector = {}
for term in self.get_document_vector(docid):
bm25_vector[term] = self.compute_bm25_term_weight(docid, term, analyzer=None, k1=k1, b=b)
# vectors are written line by line to avoid running out of memory
f.write(json.dumps({'id': docid, 'vector': bm25_vector}) + "\n")
f.close()
def quantize_weights(self, input_file_path, output_file_path, bits = 8):
"""Takes vectors of weights in Pyserini's JSONL vector format and quantizes them.
Parameters
----------
input_file_path : str
File path of vectors of weights in Pyserini's JSONL vector format.
output_file_path : str
File path to output JSONL file of quantized weight vectors.
bits : int
Number of bits to use to represent quantized scores.
"""
min_weight = float('inf')
max_weight = float('-inf')
input_file = open(input_file_path, 'r')
# vectors are read line by line to avoid running out of memory
for line in input_file:
doc = json.loads(line)
for weight in doc['vector'].values():
if weight > max_weight:
max_weight = weight
if weight < min_weight:
min_weight = weight
input_file.seek(0)
output_file = open(output_file_path, 'w')
smallest_impact = 1
for line in input_file:
doc = json.loads(line)
for element in doc['vector']:
doc['vector'][element] = math.floor((2 ** bits - smallest_impact) * (doc['vector'][element] - min_weight) / (max_weight - min_weight)) + smallest_impact
output_file.write(json.dumps(doc) + "\n")
input_file.close()
output_file.close()
|