Spaces:
Runtime error
Runtime error
File size: 12,114 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# NOTE: This code is taken from the original KILT library's retrieval evaluation script
# https://github.com/facebookresearch/KILT/blob/9bcb119a7ed5fda88826058b062d0e45c726c676/kilt/eval_retrieval.py
import argparse
import pprint
import json
from collections import defaultdict, OrderedDict
import os
from pyserini.query_iterator import KiltQueryIterator
##########################################################################################
# Replaced:
# from kilt import kilt_utils
# With the following directly imported code:
def load_data(filename):
data = []
with open(filename, "r") as fin:
lines = fin.readlines()
for line in lines:
data.append(json.loads(line))
return data
##########################################################################################
# Replaced:
# from kilt import eval_downstream
# With the following directly imported code:
def validate_input(gold_records, guess_records):
if len(gold_records) != len(guess_records):
print(
"WARNING: DIFFERENT SIZE gold: {} guess: {}".format(
len(gold_records), len(guess_records)
)
)
# align order
gold_ids = []
for gold in gold_records:
assert str(gold["id"]).strip() not in gold_ids, "Gold IDs should be unique"
gold_ids.append(str(gold["id"]).strip())
id2guess_record = {}
for guess in guess_records:
assert (
str(guess["id"]).strip() not in id2guess_record
), "Prediction IDs should be unique"
id2guess_record[str(guess["id"]).strip()] = guess
guess_records = []
for id in gold_ids:
if id in id2guess_record:
guess_records.append(id2guess_record[id])
else:
raise ValueError("ERROR: no prediction provided for id: {}".format(id))
return gold_records, guess_records
##########################################################################################
def _remove_duplicates(obj):
obj_tmp = []
for o in obj:
if o not in obj_tmp:
obj_tmp.append(o)
return obj_tmp
def _get_ids_list(datapoint, rank_keys, verbose=False):
# collect all gold ids
ids_list = []
for output in datapoint["output"]:
current_ids_list = []
if "provenance" in output:
for provenance in output["provenance"]:
if any(rank_key not in provenance for rank_key in rank_keys):
missing = set(rank_keys) - set(
list(provenance.keys())
).intersection(set(rank_keys))
if verbose:
print(
f"WARNING: missing key(s) {missing} in provenance, unable to compute retrieval for those."
)
else:
current_ids_list.append(
"+".join(
[
str(provenance[rank_key]).strip()
for rank_key in rank_keys
]
)
)
ids_list.append(_remove_duplicates(current_ids_list)) # remove duplicates
# consider only unique ids
return ids_list
def get_rank(guess_item, gold_item, k, rank_keys, verbose=False):
"""
The main idea is to consider each evidence set as a single point in the rank.
The score in the rank for an evidence set is given by the lowest scored evidence in the set.
"""
assert k > 0, "k must be a positive integer grater than 0."
rank = []
num_distinct_evidence_sets = 0
guess_ids = _get_ids_list(guess_item, rank_keys)[0]
if guess_ids and len(guess_ids) > 0:
# 1. collect evidence sets and their sizes
evidence_sets = []
e_size = defaultdict(int)
for output in gold_item["output"]:
if "provenance" in output:
e_set = {
"+".join(
[str(provenance[rank_key]).strip() for rank_key in rank_keys]
)
for provenance in output["provenance"]
}
if e_set not in evidence_sets: # no duplicate evidence set
evidence_sets.append(e_set)
e_size[len(e_set)] += 1
num_distinct_evidence_sets = len(evidence_sets)
# 2. check what's the minimum number of predicted pages needed to get a robust P/R@k
min_prediction_size = 0
c = 0
for size, freq in sorted(e_size.items(), reverse=True):
for _ in range(freq):
min_prediction_size += size
c += 1
if c == k:
break
if c == k:
break
# if the number of evidence sets is smaller than k
min_prediction_size += k - c
if verbose and len(guess_ids) < min_prediction_size:
print(
f"WARNING: you should provide at least {min_prediction_size} provenance items for a robust recall@{k} computation (you provided {len(guess_ids)} item(s))."
)
# 3. rank by gruping pages in each evidence set (each evidence set count as 1),
# the position in the rank of each evidence set is given by the last page in guess_ids
# non evidence pages counts as 1
rank = []
for guess_id in guess_ids:
guess_id = str(guess_id).strip()
found = False
for idx, e_set in enumerate(evidence_sets):
e_set_id = f"evidence_set:{idx}"
if guess_id in e_set:
found = True
# remove from the rank previous points referring to this evidence set
if e_set_id in rank:
rank.remove(e_set_id)
# remove the guess_id from the evidence set
e_set.remove(guess_id)
if len(e_set) == 0:
# it was the last evidence, it counts as true in the rank
rank.append(True)
else:
# add a point for this partial evidence set
rank.append(e_set_id)
if not found:
rank.append(False)
return rank, num_distinct_evidence_sets
# 1. Precision computation
def _precision_at_k(rank, k):
# precision @ k
p = rank[:k].count(True) / k
return p
# 2. Recall computation
def _recall_at_k(rank, num_distinct_evidence_sets, k):
r = rank[:k].count(True) / num_distinct_evidence_sets
return r
# 3. Success rate computation
def _success_rate_at_k(rank, k):
# success rate @ k
p = int(True in rank[:k])
return p
def _computeRprec(guess_ids, gold_ids):
R = len(gold_ids)
num = 0
for prediction in guess_ids[:R]:
if str(prediction).strip() in gold_ids:
num += 1
Rprec = num / R if R > 0 else 0
return Rprec
# R-precision https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-39940-9_486
def rprecision(guess_item, gold_item, rank_keys):
gold_ids_list = _get_ids_list(gold_item, rank_keys)
guess_ids = _get_ids_list(guess_item, rank_keys)[0]
Rprec_vector = []
for gold_ids in gold_ids_list:
Rprec = _computeRprec(guess_ids, gold_ids)
Rprec_vector.append(Rprec)
return max(Rprec_vector)
def get_ranking_metrics(guess_item, gold_item, ks, rank_keys):
Rprec = 0
P_at_k = {"precision@{}".format(k): 0 for k in sorted(ks) if k > 0}
R_at_k = {"recall@{}".format(k): 0 for k in sorted(ks) if k > 1}
S_at_k = {"success_rate@{}".format(k): 0 for k in sorted(ks) if k > 1}
assert (
"output" in guess_item and len(guess_item["output"]) == 1
), f"guess should provide exactly one output for {guess_item['id']}"
Rprec = rprecision(guess_item, gold_item, rank_keys=rank_keys)
for k in ks:
# 0. get rank
rank, num_distinct_evidence_sets = get_rank(
guess_item, gold_item, k, rank_keys=rank_keys
)
if num_distinct_evidence_sets > 0:
# 1. precision
P_at_k["precision@{}".format(k)] = _precision_at_k(rank, k)
# 2. recall
R_at_k["recall@{}".format(k)] = _recall_at_k(
rank, num_distinct_evidence_sets, k
)
# 3. success rate
S_at_k["success_rate@{}".format(k)] = _success_rate_at_k(rank, k)
# else:
# print(
# "WARNING: the number of distinct evidence sets is 0 for {}".format(
# gold_item
# )
# )
return {"Rprec": Rprec, **P_at_k, **R_at_k, **S_at_k}
def compute(gold_dataset, guess_dataset, ks, rank_keys):
ks = sorted([int(x) for x in ks])
result = OrderedDict()
result["Rprec"] = 0.0
for k in ks:
if k > 0:
result["precision@{}".format(k)] = 0.0
if k > 1:
result["recall@{}".format(k)] = 0.0
result["success_rate@{}".format(k)] = 0.0
assert len(guess_dataset) == len(
gold_dataset
), "different size gold: {} guess: {}".format(len(guess_dataset), len(gold_dataset))
for gold, guess in zip(guess_dataset, gold_dataset):
assert (
str(gold["id"]).strip() == str(guess["id"]).strip()
), "Items must have same order with same IDs"
for guess_item, gold_item in zip(guess_dataset, gold_dataset):
ranking_metrics = get_ranking_metrics(guess_item, gold_item, ks, rank_keys)
result["Rprec"] += ranking_metrics["Rprec"]
for k in ks:
if k > 0:
result["precision@{}".format(k)] += ranking_metrics[
"precision@{}".format(k)
]
if k > 1:
result["recall@{}".format(k)] += ranking_metrics["recall@{}".format(k)]
result["success_rate@{}".format(k)] += ranking_metrics[
"success_rate@{}".format(k)
]
if len(guess_dataset) > 0:
result["Rprec"] /= len(guess_dataset)
for k in ks:
if k > 0:
result["precision@{}".format(k)] /= len(guess_dataset)
if k > 1:
result["recall@{}".format(k)] /= len(guess_dataset)
result["success_rate@{}".format(k)] /= len(guess_dataset)
return result
def evaluate(gold, guess, ks, rank_keys):
pp = pprint.PrettyPrinter(indent=4)
gold_dataset = load_data(gold)
guess_dataset = load_data(guess)
# 0. validate input
gold_dataset, guess_dataset = validate_input(
gold_dataset, guess_dataset
)
# 1. get retrieval metrics
result = compute(gold_dataset, guess_dataset, ks, rank_keys)
pp.pprint(result)
return result
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("guess", help="Guess KILT file")
parser.add_argument("gold", help="Gold KILT file")
parser.add_argument(
"--ks",
type=str,
required=False,
default="1,5,10,20",
help="Comma separated list of positive integers for recall@k and precision@k",
)
parser.add_argument(
"--rank_keys",
type=str,
required=False,
default="wikipedia_id",
help="Comma separated list of rank keys for recall@k and precision@k",
)
args = parser.parse_args()
args.ks = [int(k) for k in args.ks.split(",")]
args.rank_keys = [rank_key for rank_key in args.rank_keys.split(",")]
##########################################################################################
# Pyserini change:
# Download gold file if necessary
gold = args.gold
if not os.path.exists(args.gold):
gold = KiltQueryIterator.download_kilt_topics(gold)
##########################################################################################
evaluate(gold, args.guess, args.ks, args.rank_keys)
|