File size: 8,144 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os

import faiss
import torch
import numpy as np
from tqdm import tqdm


class DocumentEncoder:
    def encode(self, texts, **kwargs):
        pass

    @staticmethod
    def _mean_pooling(last_hidden_state, attention_mask):
        token_embeddings = last_hidden_state
        input_mask_expanded = (
            attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        )
        sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
        sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
        return sum_embeddings / sum_mask


class QueryEncoder:
    def encode(self, text, **kwargs):
        pass


class PcaEncoder:
    def __init__(self, encoder, pca_model_path):
        self.encoder = encoder
        self.pca_mat = faiss.read_VectorTransform(pca_model_path)

    def encode(self, text, **kwargs):
        if isinstance(text, str):
            embeddings = self.encoder.encode(text, **kwargs)
            embeddings = self.pca_mat.apply_py(np.array([embeddings]))
            embeddings = embeddings[0]
        else:
            embeddings = self.encoder.encode(text, **kwargs)
            embeddings = self.pca_mat.apply_py(embeddings)
        return embeddings


class JsonlCollectionIterator:
    def __init__(self, collection_path: str, fields=None, delimiter="\n\n"):
        if fields:
            self.fields = fields
        else:
            self.fields = ["text"]
        self.delimiter = delimiter

        self.all_info = self._load(collection_path)
        self.size = len(self.all_info["id"])
        self.batch_size = 1
        self.shard_id = 0
        self.shard_num = 1

    def __call__(self, batch_size=1, shard_id=0, shard_num=1):
        self.batch_size = batch_size
        self.shard_id = shard_id
        self.shard_num = shard_num
        return self

    def __iter__(self):
        total_len = self.size
        shard_size = int(total_len / self.shard_num)
        start_idx = self.shard_id * shard_size
        end_idx = min(start_idx + shard_size, total_len)
        if self.shard_id == self.shard_num - 1:
            end_idx = total_len
        to_yield = {}
        for idx in tqdm(range(start_idx, end_idx, self.batch_size)):
            for key in self.all_info:
                to_yield[key] = self.all_info[key][
                    idx : min(idx + self.batch_size, end_idx)
                ]
            yield to_yield

    def _parse_fields_from_info(self, info):
        """
        :params info: dict, containing all fields as speicifed in self.fields either under
        the key of the field name or under the key of 'contents'.  If under `contents`, this
        function will parse the input contents into each fields based the self.delimiter
        return: List, each corresponds to the value of self.fields
        """
        n_fields = len(self.fields)

        # if all fields are under the key of info, read these rather than 'contents'
        if all([field in info for field in self.fields]):
            return [info[field].strip() for field in self.fields]

        assert "contents" in info, f"contents not found in info: {info}"
        contents = info["contents"]
        # whether to remove the final self.delimiter (especially \n)
        # in CACM, a \n is always there at the end of contents, which we want to remove;
        # but in SciFact, Fiqa, and more, there are documents that only have title but not text (e.g. "This is title\n")
        # where the trailing \n indicates empty fields
        if contents.count(self.delimiter) == n_fields:
            # the user appends one more delimiter to the end, we remove it
            if contents.endswith(self.delimiter):
                # not using .rstrip() as there might be more than one delimiters at the end
                contents = contents[: -len(self.delimiter)]
        return [field.strip(" ") for field in contents.split(self.delimiter)]

    def _load(self, collection_path):
        filenames = []
        if os.path.isfile(collection_path):
            filenames.append(collection_path)
        else:
            for filename in os.listdir(collection_path):
                filenames.append(os.path.join(collection_path, filename))
        all_info = {field: [] for field in self.fields}
        all_info["id"] = []
        for filename in filenames:
            with open(filename) as f:
                for line_i, line in tqdm(enumerate(f)):
                    # try:
                    info = json.loads(line)
                    _id = info.get("id", info.get("docid", None))
                    if _id is None:
                        raise ValueError(
                            f"Cannot find 'id' or 'docid' from {filename}."
                        )
                    all_info["id"].append(str(_id))
                    fields_info = self._parse_fields_from_info(info)

                    if len(fields_info) != len(self.fields):
                        raise ValueError(
                            f"{len(fields_info)} fields are found at Line#{line_i} in file {filename}."
                            f"{len(self.fields)} fields expected."
                            f"Line content: {info['contents']}"
                        )

                    for i in range(len(fields_info)):
                        all_info[self.fields[i]].append(fields_info[i])
                    # except:
                    # print(f"skip line with error: {line}")
        return all_info


class RepresentationWriter:
    def __enter__(self):
        pass

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass

    def write(self, batch_info, fields=None):
        pass


class JsonlRepresentationWriter(RepresentationWriter):
    def __init__(self, dir_path):
        self.dir_path = dir_path
        self.filename = "embeddings.jsonl"
        self.file = None

    def __enter__(self):
        if not os.path.exists(self.dir_path):
            os.makedirs(self.dir_path)
        self.file = open(os.path.join(self.dir_path, self.filename), "w")

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.file.close()

    def write(self, batch_info, fields=None):
        for i in range(len(batch_info["id"])):
            contents = "\n".join([batch_info[key][i] for key in fields])
            vector = batch_info["vector"][i]
            vector = vector.tolist() if isinstance(vector, np.ndarray) else vector
            self.file.write(
                json.dumps(
                    {"id": batch_info["id"][i], "contents": contents, "vector": vector}
                )
                + "\n"
            )


class FaissRepresentationWriter(RepresentationWriter):
    def __init__(self, dir_path, dimension=768):
        self.dir_path = dir_path
        self.index_name = "index"
        self.id_file_name = "docid"
        self.dimension = dimension
        self.index = faiss.IndexFlatIP(self.dimension)
        self.id_file = None

    def __enter__(self):
        if not os.path.exists(self.dir_path):
            os.makedirs(self.dir_path)
        self.id_file = open(os.path.join(self.dir_path, self.id_file_name), "w")

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.id_file.close()
        faiss.write_index(self.index, os.path.join(self.dir_path, self.index_name))

    def write(self, batch_info, fields=None):
        for id_ in batch_info["id"]:
            self.id_file.write(f"{id_}\n")
        self.index.add(np.ascontiguousarray(batch_info["vector"]))