Spaces:
Runtime error
Runtime error
File size: 10,433 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
import json
import sys
sys.path.append('..')
sys.path.append('../pyserini')
import subprocess
from enum import Enum
from pyserini.vectorizer import TfidfVectorizer
from pyserini.vectorizer import BM25Vectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from typing import List
from sklearn import preprocessing
from typing import List, Set
def normalize(scores):
low = min(scores)
high = max(scores)
width = high - low
return [(s-low)/width for s in scores]
def sort_dual_list(pred, docs):
zipped_lists = zip(pred, docs)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
pred, docs = [list(tuple) for tuple in tuples]
pred.reverse()
docs.reverse()
return pred, docs
def sort_str_topics_list(topics: List[str]) -> List[str]:
res = sorted([int(t) for t in topics])
return [str(t) for t in res]
def get_topics_from_qrun(path: str) -> Set[str]:
res = set()
with open(path, 'r') as f:
for line in f:
res.add(line.split()[0])
return sort_str_topics_list(res)
def get_lines_by_topic(path, topic, tag):
res = []
with open(path, 'r') as f:
for line in f:
tokens = line.split()
if tokens[0] != topic:
continue
tokens[-1] = tag
new_line = ' '.join(tokens)
res.append(new_line)
return res
def read_qrels(path: str):
qrels = []
with open(path, 'r') as f:
for line in f:
line = line.strip()
tokens = line.split()
topic = tokens[0]
doc_id = tokens[-2]
relevance = int(tokens[-1])
qrels.append({
'topic': topic,
'doc_id': doc_id,
'relevance': relevance
})
return qrels
def get_doc_to_id_from_qrun_by_topic(path: str, topic: str):
res = {}
with open(path, 'r') as f:
for line in f:
tokens = line.strip().split()
t = tokens[0]
if topic != t:
continue
doc_id = tokens[2]
score = float(tokens[-2])
res[doc_id] = score
return res
def get_docs_from_qrun_by_topic(path: str, topic: str):
x, y = [], []
with open(path, 'r') as f:
for line in f:
tokens = line.strip().split()
t = tokens[0]
if topic != t:
continue
doc_id = tokens[2]
score = float(tokens[-2])
x.append(doc_id)
y.append(score)
return x, y
def get_X_Y_from_qrels_by_topic(path: str, topic: str, R: List[int]):
# always include topic 0
R.append(0)
qrels = [qrel for qrel in read_qrels(path) if qrel['topic'] == topic and qrel['relevance'] in R]
x, y = [], []
for pack in qrels:
x.append(pack['doc_id'])
label = 0 if pack['relevance'] == 0 else 1
y.append(label)
return x, y
class SpecterVectorizer:
def __init__(self):
path = "data/specter.csv"
self.vectors = {}
with open(path, 'r') as f:
for line in f:
tokens = line.strip().split(',')
doc_id = tokens[0]
vector = [float(item) for item in tokens[1:]]
self.vectors[doc_id] = vector
def get_vectors(self, doc_ids: List[str]):
res = []
for doc_id in doc_ids:
if doc_id in self.vectors:
res.append(self.vectors[doc_id])
else:
print(f'{doc_id} not found')
return preprocessing.normalize(res)
class ClassifierType(Enum):
SVM = 'svm'
LR = 'lr'
NB = 'nb'
ClassifierStr = {
ClassifierType.SVM: 'svm',
ClassifierType.LR: 'lr',
ClassifierType.NB: 'nb',
}
class VectorizerType(Enum):
TFIDF = 'tfidf'
BM25 = 'bm25'
SPECTER = 'specter'
VectorizerStr = {
VectorizerType.TFIDF: 'tfidf',
VectorizerType.BM25: 'bm25',
VectorizerType.SPECTER: 'specter',
}
def evaluate(qrels_path: str, run_path: str, options: str = ''):
curdir = os.getcwd()
if curdir.endswith('clprf'):
anserini_root = '../../../anserini'
else:
anserini_root = '../anserini'
prefix = f"{anserini_root}/tools/eval/trec_eval.9.0.4/trec_eval -c -M1000 -m all_trec {qrels_path}"
cmd1 = f"{prefix} {run_path} {options} | grep 'ndcg_cut_20 '"
cmd2 = f"{prefix} {run_path} {options} | grep 'map '"
ndcg_score = str(subprocess.check_output(cmd1, shell=True)).split('\\t')[-1]
map_score = str(subprocess.check_output(cmd2, shell=True)).split('\\t')[-1]
return str(map_score),str(ndcg_score)
def rank(new_qrels: str, base: str,tmp_base:str, qrels_path: str, lucene_index_path: str, R: List[int], score_path: str, alpha: float, clf_type: ClassifierType, vec_type: VectorizerType, tag: str):
# build output path
base_str = base.split('/')[-1]
R_str = ''.join([str(i) for i in R])
curdir = os.getcwd()
if curdir.endswith('integrations'):
output_path = f'{tmp_base}/runs/{base_str}.{ClassifierStr[clf_type]}.{VectorizerStr[vec_type]}.R{R_str}.A{alpha}.txt'
else:
output_path = f'integrations/{tmp_base}/runs/{base_str}.{ClassifierStr[clf_type]}.{VectorizerStr[vec_type]}.R{R_str}.A{alpha}.txt'
print(f'Output -> {output_path}')
os.system('mkdir -p runs')
vectorizer = None
if vec_type == VectorizerType.TFIDF:
vectorizer = TfidfVectorizer(lucene_index_path, min_df=5)
elif vec_type == VectorizerType.SPECTER:
base += '.specter'
qrels_path += '.specter'
vectorizer = SpecterVectorizer()
elif vec_type == VectorizerType.BM25:
vectorizer = BM25Vectorizer(lucene_index_path, min_df=5)
else:
print('invalid vectorizer')
exit()
f = open(output_path, 'w+')
skipped_topics = set()
topics = get_topics_from_qrun(base)
for topic in topics:
train_docs, train_labels = get_X_Y_from_qrels_by_topic(qrels_path, topic, R)
if len(train_docs) == 0:
print(f'[topic][{topic}] skipped')
skipped_topics.add(topic)
continue
print(f'[topic][{topic}] eligible train docs {len(train_docs)}')
clf = None
if clf_type == ClassifierType.NB:
clf = MultinomialNB()
elif clf_type == ClassifierType.LR:
clf = LogisticRegression()
elif clf_type == ClassifierType.SVM:
clf = SVC(kernel='linear', probability=True)
else:
print('ClassifierType not supported')
exit()
train_vectors = vectorizer.get_vectors(train_docs)
clf.fit(train_vectors, train_labels)
test_docs, base_scores = get_docs_from_qrun_by_topic(base, topic)
print(f'[topic][{topic}] eligible test docs {len(test_docs)}')
test_vectors = vectorizer.get_vectors(test_docs)
rank_scores = clf.predict_proba(test_vectors)
rank_scores = [row[1] for row in rank_scores]
rank_scores = normalize(rank_scores)
base_scores = normalize(base_scores)
preds = [a * alpha + b * (1-alpha) for a, b in zip(rank_scores, base_scores)]
preds, docs = sort_dual_list(preds, test_docs)
for index, (score, doc_id) in enumerate(zip(preds, docs)):
rank = index + 1
f.write(f'{topic} Q0 {doc_id} {rank} {score} {tag}\n')
for topic in sort_str_topics_list(list(skipped_topics)):
lines = get_lines_by_topic(base, topic, tag)
print(f'Copying over skipped topic {topic} with {len(lines)} lines')
for line in lines:
f.write(f'{line}\n')
f.close()
map_score,ndcg_score = evaluate(new_qrels, output_path)
with open(score_path, 'w') as outfile:
json.dump({'map':map_score,'ndcg':ndcg_score}, outfile)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='use tfidf vectorizer on cord-19 dataset with ccrf technique')
parser.add_argument('-tag', type=str, default="interpolation",
metavar="tag_name", help='tag name for resulting Qrun')
parser.add_argument('-new_qrels', type=str, default="data/qrels-rnd1+2+3+4.txt",
metavar="path_to_new_qrels", help='path to new_qrels file')
parser.add_argument('-base', type=str, default="data/covidex.t5.final.txt",
metavar="path_to_base_run", help='path to base run')
parser.add_argument('-tmp_base', type=str, default="tmp101}",
metavar="tmp file folder name", help='"tmp file folder name')
parser.add_argument('-qrels', type=str, default="data/qrels-rnd1+2.txt",
metavar="path_to_qrels", help='path to qrels file')
parser.add_argument('-index', type=str, default="data/lucene-index-cord19-abstract-2020-05-19",
metavar="path_to_lucene_index", help='path to lucene index folder')
parser.add_argument('-output', type=str, default="data/output.json",
metavar="path_to_base_run", help='the path to map and ndcg scores')
parser.add_argument('-alpha', type=float, required=True, help='alpha value for interpolation')
parser.add_argument('-clf', type=ClassifierType, required=True, help='which classifier to use')
parser.add_argument('-vectorizer', type=VectorizerType, required=True, help='which vectorizer to use')
args = parser.parse_args()
R = [1, 2]
print('Using base run:', args.base)
rank(args.new_qrels, args.base, args.tmp_base, args.qrels, args.index, R, args.output, args.alpha, args.clf, args.vectorizer, args.tag)
|