File size: 7,390 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import math
import os
import subprocess
import time
from collections import defaultdict
from string import Template

import yaml

from scripts.repro_matrix.defs_miracl import models, languages, trec_eval_metric_definitions
from scripts.repro_matrix.utils import run_eval_and_return_metric, ok_str, okish_str, fail_str


def print_results(metric, split):
    print(f'Metric = {metric}, Split = {split}')
    print(' ' * 35, end='')
    for lang in languages:
        print(f'{lang[0]:3}    ', end='')
    print('')
    for model in models:
        print(f'{model:33}', end='')
        for lang in languages:
            key = f'{model}.{lang[0]}'
            print(f'{table[key][split][metric]:7.3f}', end='')
        print('')
    print('')


def extract_topic_fn_from_cmd(cmd):
    cmd = cmd.split()
    topic_idx = cmd.index('--topics')
    return cmd[topic_idx + 1]


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Generate regression matrix for MIRACL.')
    parser.add_argument('--skip-eval', action='store_true', default=False, help='Skip running trec_eval.')
    args = parser.parse_args()

    start = time.time()

    table = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.0)))

    with open('pyserini/resources/miracl.yaml') as f:
        yaml_data = yaml.safe_load(f)
        for condition in yaml_data['conditions']:
            name = condition['name']
            eval_key = condition['eval_key']
            cmd_template = condition['command']
            cmd_lst = cmd_template.split()

            print(f'condition {name}:')
            lang = name.split('.')[-1]
            is_hybrid_run = 'hybrid' in name

            for splits in condition['splits']:
                split = splits['split']
                if is_hybrid_run:
                    hits = int(cmd_lst[cmd_lst.index('--k') + 1])
                else:
                    hits = int(cmd_lst[cmd_lst.index('--hits') + 1])

                print(f'  - split: {split}')

                runfile = f'runs/run.miracl.{name}.{split}.top{hits}.txt'
                if is_hybrid_run:
                    bm25_output = f'runs/run.miracl.bm25.{lang}.{split}.top{hits}.txt'
                    mdpr_output = f'runs/run.miracl.mdpr-tied-pft-msmarco.{lang}.{split}.top{hits}.txt'
                    if not os.path.exists(bm25_output):
                        print(f'Missing BM25 file: {bm25_output}')
                        continue
                    if not os.path.exists(mdpr_output):
                        print(f'Missing mDPR file: {mdpr_output}')
                        continue
                    cmd = Template(cmd_template).substitute(split=split, output=runfile, bm25_output=bm25_output, mdpr_output=mdpr_output)
                else:
                    cmd = Template(cmd_template).substitute(split=split, output=runfile)

                # In the yaml file, the topics are written as something like '--topics miracl-v1.0-ar-${split}'
                # This works for the dev split because the topics are directly included in Anserini/Pyserini.
                # For this training split, we have to map the symbol into a file in tools/topics-and-qrels/
                # Here, we assume that the developer has cloned the miracl repo and placed the topics there.
                if split == 'train':
                    cmd = cmd.replace(f'--topics miracl-v1.0-{lang}-{split}',
                                      f'--topics tools/topics-and-qrels/topics.miracl-v1.0-{lang}-{split}.tsv')

                if not os.path.exists(runfile):
                    print(f'    Running: {cmd}')
                    rtn = subprocess.run(cmd.split(), capture_output=True)
                    stderr = rtn.stderr.decode()
                    if '--topics' in cmd:
                        topic_fn = extract_topic_fn_from_cmd(cmd)
                        if f'ValueError: Topic {topic_fn} Not Found' in stderr:
                            print(f'Skipping {topic_fn}: file not found.')
                            continue

                for expected in splits['scores']:
                    for metric in expected:
                        if not args.skip_eval:
                            # We have the translate the training qrels into a file located in tools/topics-and-qrels/
                            # because they are not included with Anserini/Pyserini by default.
                            # Here, we assume that the developer has cloned the miracl repo and placed the qrels there.
                            if split == 'train':
                                qrels = f'tools/topics-and-qrels/qrels.{eval_key}-train.tsv'
                            else:
                                qrels = f'{eval_key}-{split}'
                            score = float(run_eval_and_return_metric(metric, qrels,
                                                                     trec_eval_metric_definitions[metric], runfile))
                            if math.isclose(score, float(expected[metric])):
                                result_str = ok_str
                            # Flaky tests
                            elif (name == 'mdpr-tied-pft-msmarco.hi' and split == 'train'
                                  and math.isclose(score, float(expected[metric]), abs_tol=2e-4)) or \
                                 (name == 'mdpr-tied-pft-msmarco-ft-all.ru'
                                  and split == 'dev' and metric == 'nDCG@10'
                                  and math.isclose(score, float(expected[metric]), abs_tol=2e-4)) or \
                                 (name == 'bm25-mdpr-tied-pft-msmarco-hybrid.te'
                                  and split == 'train' and metric == 'nDCG@10'
                                  and math.isclose(score, float(expected[metric]), abs_tol=2e-4)) or \
                                 (name == 'bm25-mdpr-tied-pft-msmarco-hybrid.zh'
                                  and split == 'dev' and metric == 'nDCG@10'
                                  and math.isclose(score, float(expected[metric]), abs_tol=2e-4)):
                                result_str = okish_str
                            else:
                                result_str = fail_str + f' expected {expected[metric]:.4f}'
                            print(f'      {metric:7}: {score:.4f} {result_str}')
                            table[name][split][metric] = score
                        else:
                            table[name][split][metric] = expected[metric]

            print('')

    for metric in ['nDCG@10', 'R@100']:
        for split in ['dev', 'train']:
            print_results(metric, split)

    end = time.time()
    print(f'Total elapsed time: {end - start:.0f}s')