Spaces:
Runtime error
Runtime error
File size: 2,689 Bytes
d6585f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import pandas as pd
from tqdm import tqdm
import sys
import os
# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one).
# Comment these lines out to use a pip-installed one instead.
sys.path.insert(0, './')
sys.path.insert(0, '../pyserini/')
from pyserini.dsearch import AnceQueryEncoder, AutoQueryEncoder, TctColBertQueryEncoder, DprQueryEncoder
from pyserini.search import get_topics
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--encoder', type=str, help='encoder name or path', required=True)
parser.add_argument('--topics', type=str, help='topic name', required=True)
parser.add_argument('--output', type=str, help='dir to store query embeddings', required=True)
parser.add_argument('--device', type=str,
help='device cpu or cuda [cuda:0, cuda:1...]', default='cpu', required=False)
args = parser.parse_args()
device = args.device
topics = get_topics(args.topics)
if not os.path.exists(args.output):
os.mkdir(args.output)
if 'dpr' in args.encoder:
encoder = DprQueryEncoder(encoder_dir=args.encoder, device=device)
elif 'tct_colbert' in args.encoder:
encoder = TctColBertQueryEncoder(encoder_dir=args.encoder, device=device)
elif 'ance' in args.encoder:
encoder = AnceQueryEncoder(encoder_dir=args.encoder, device=device)
elif 'sentence' in args.encoder:
encoder = AutoQueryEncoder(encoder_dir=args.encoder, device=device, pooling='mean', l2_norm=True)
else:
encoder = AutoQueryEncoder(encoder_dir=args.encoder, device=device)
embeddings = {'id': [], 'text': [], 'embedding': []}
for key in tqdm(topics):
qid = str(key)
text = topics[key]['title']
embeddings['id'].append(qid)
embeddings['text'].append(text)
embeddings['embedding'].append(encoder.encode(text.strip()))
embeddings = pd.DataFrame(embeddings)
embeddings.to_pickle(os.path.join(args.output, 'embedding.pkl'))
|