File size: 5,244 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
This script provides an interactive web interface demo for retrieval on the MIRACL dataset.
It requires `flask` (`pip install flask~=2.2.0`).
An example command looks like `python -m pyserini.demo.miracl` that starts up a server on port 8080.
The demo can be accessed via "http://localhost:8080" in a web browser.
Additional arguments include:
    --port [PORT] --hits [Number of hits] --index [BM25 or mdpr-tied-pft-msmarco]
    --k1 [BM25 k1] --b [BM25 b] --device [cpu, cuda]
"""
import json
import logging
from argparse import ArgumentParser
from functools import partial
from typing import Callable, Optional, Tuple, Union

from flask import Flask, render_template, request, flash, jsonify
from pyserini.search import LuceneSearcher, FaissSearcher, AutoQueryEncoder

logging.basicConfig(
    format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S',
    level=logging.INFO,
)
logger = logging.getLogger('miracl-demo')

VERSION = '1.0'
LANGUAGES = ('ar', 'bn', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'zh')
Searcher = Union[FaissSearcher, LuceneSearcher]


def create_app(k: int, load_searcher_fn: Callable[[str], Tuple[Searcher, str]]):
    app = Flask(__name__)

    lang = LANGUAGES[0]
    searcher, retriever = load_searcher_fn(lang)

    @app.route('/')
    def index():
        nonlocal lang, searcher, retriever
        return render_template('miracl.html', lang=lang, retriever=retriever)

    @app.route('/search', methods=['GET', 'POST'])
    def search():
        nonlocal lang, searcher, retriever
        query = request.form['q']
        if not query:
            search_results = []
            flash('Question is required')
        else:
            hits = searcher.search(query, k=k)
            docs = [json.loads(searcher.doc(hit.docid).raw()) for hit in hits]
            search_results = [
                {
                    'rank': r + 1,
                    'docid': hit.docid,
                    'doc': docs[r]['text'],
                    'title': docs[r]['title'],
                    'score': hit.score,
                }
                for r, hit in enumerate(hits)
            ]
        return render_template(
            'miracl.html', search_results=search_results, query=query, lang=lang, retriever=retriever
        )

    @app.route('/lang', methods=['GET'])
    def change_language():
        nonlocal lang, searcher, retriever
        new_lang = request.args.get('new_lang', '', type=str)
        if not new_lang or new_lang not in LANGUAGES:
            return

        lang = new_lang
        searcher, retriever = load_searcher_fn(lang)
        return jsonify(lang=lang)

    return app


def _load_sparse_searcher(language: str, k1: Optional[float]=None, b: Optional[float]=None) -> (Searcher, str):
    searcher = LuceneSearcher.from_prebuilt_index(f'miracl-v{VERSION}-{language}')
    searcher.set_language(language)
    if k1 is not None and b is not None:
        searcher.set_bm25(k1, b)
        retriever_name = f'BM25 (k1={k1}, b={b})'
    else:
        retriever_name = 'BM25'

    return searcher, retriever_name


def _load_faiss_searcher(language: str, device:  str) -> (Searcher, str):
    query_encoder = AutoQueryEncoder(encoder_dir='castorini/mdpr-tied-pft-msmarco', device=device)
    searcher = FaissSearcher.from_prebuilt_index(
        f'miracl-v{VERSION}-{language}-mdpr-tied-pft-msmarco', query_encoder
    )
    retriever_name = 'mDPR-pFT-MSMARCO'
    return searcher, retriever_name


def main():
    parser = ArgumentParser()

    parser.add_argument('--index', default='BM25', choices=('BM25', 'mdpr-tied-pft-msmarco'), help='Index type.')
    parser.add_argument('--k1', type=float, help='BM25 k1 parameter.')
    parser.add_argument('--b', type=float, help='BM25 b parameter.')
    parser.add_argument('--hits', type=int, default=10, help='Number of hits returned by the retriever')
    parser.add_argument(
        '--device',
        type=str,
        default='cpu',
        help='Device to run query encoder, cpu or [cuda:0, cuda:1, ...] (used only when index is based on FAISS)',
    )
    parser.add_argument(
        '--port',
        default=8080,
        type=int,
        help='Web server port',
    )

    args = parser.parse_args()

    if args.index == 'mdpr-tied-pft-msmarco':
        load_fn = partial(_load_faiss_searcher, device=args.device)
    else:
        load_fn = partial(_load_sparse_searcher, k1=args.k1, b=args.b)

    app = create_app(args.hits, load_fn)
    app.run(host='0.0.0.0', port=args.port)


if __name__ == '__main__':
    main()