File size: 8,665 Bytes
ff66cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import sys
import json

import numpy as np
from cliport import tasks
from cliport import agents
from cliport.utils import utils

import torch
import cv2
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from torch.utils.data import DataLoader
import IPython

import matplotlib
import numpy as np
import matplotlib.pyplot as plt

train_demos = 10 # number training demonstrations used to train agent
n_eval = 1 # number of evaluation instances
mode = 'test' # val or test

agent_name = 'cliport'
model_task = 'place-red-in-green' # multi-task agent conditioned with language goals
task_type = 'gpt5_mixcliport2'  # gpt5_mixcliport2
model_folder = f'exps/exp-{task_type}_task_new_demo{train_demos}_2023-08-01_16-13-10-smaller' # path to pre-trained checkpoint
ckpt_name = 'last.ckpt' # name of checkpoint to load

draw_grasp_lines = True
affordance_heatmap_scale = 30

### Uncomment the task you want to evaluate on ###
# eval_task = 'align-rope'
# eval_task = 'assembling-kits-seq-seen-colors'
# eval_task = 'assembling-kits-seq-unseen-colors'
# eval_task = 'packing-shapes'
# eval_task = 'packing-boxes-pairs-seen-colors'
# eval_task = 'packing-boxes-pairs-unseen-colors'
# eval_task = 'packing-seen-google-objects-seq'
# eval_task = 'packing-unseen-google-objects-seq'
# eval_task = 'packing-seen-google-objects-group'
# eval_task = 'packing-unseen-google-objects-group'
# eval_task = 'put-block-in-bowl-seen-colors'
# eval_task = 'put-block-in-bowl-unseen-colors'
eval_task = 'place-red-in-green'
# eval_task = 'stack-block-pyramid-seq-unseen-colors'
# eval_task = 'separating-piles-seen-colors'
# eval_task = 'separating-piles-unseen-colors'
# eval_task = 'towers-of-hanoi-seq-seen-colors'
# eval_task = 'towers-of-hanoi-seq-unseen-colors'


root_dir = os.environ['GENSIM_ROOT']
assets_root = os.path.join(root_dir, 'cliport/environments/assets/')
config_file = 'eval.yaml' 

vcfg = utils.load_hydra_config(os.path.join(root_dir, f'cliport/cfg/{config_file}'))
vcfg['data_dir'] = os.path.join(root_dir, 'data')
vcfg['mode'] = mode

vcfg['model_task'] = model_task
vcfg['eval_task'] = eval_task
vcfg['agent'] = agent_name

# Model and training config paths
model_path = os.path.join(root_dir, model_folder)
if model_folder[-7:] == 'smaller':
    vcfg['train_config'] = f"{model_path}/{model_folder[9:-8]}-{vcfg['agent']}-n{train_demos}-train/.hydra/config.yaml"
    vcfg['model_path'] = f"{model_path}/{model_folder[9:-8]}-{vcfg['agent']}-n{train_demos}-train/checkpoints/"
else:
    vcfg['train_config'] = f"{model_path}/{model_folder[9:]}-{vcfg['agent']}-n{train_demos}-train/.hydra/config.yaml"
    vcfg['model_path'] = f"{model_path}/{model_folder[9:]}-{vcfg['agent']}-n{train_demos}-train/checkpoints/"
tcfg = utils.load_hydra_config(vcfg['train_config'])

# Load dataset
ds = RavensDataset(os.path.join(vcfg['data_dir'], f'{vcfg["eval_task"]}-{vcfg["mode"]}'), 
                   tcfg, 
                   n_demos=n_eval,
                   augment=False)

eval_run = 0
name = '{}-{}-{}-{}'.format(vcfg['eval_task'], vcfg['agent'], n_eval, eval_run)
print(f'\nEval ID: {name}\n')

# Initialize agent
utils.set_seed(eval_run, torch=True)
agent = agents.names[vcfg['agent']](name, tcfg, DataLoader(ds), DataLoader(ds))

# Load checkpoint
ckpt_path = os.path.join(vcfg['model_path'], ckpt_name)
print(f'\nLoading checkpoint: {ckpt_path}')
agent.load(ckpt_path)



env = Environment(
    assets_root,
    disp=False,
    shared_memory=False,
    hz=480,
    record_cfg=vcfg['record']
)




episode = 0
num_eval_instances = min(n_eval, ds.n_episodes)

for i in range(num_eval_instances):
    print(f'\nEvaluation Instance: {i + 1}/{num_eval_instances}')
    
    # Load episode
    episode, seed = ds.load(i)
    goal = episode[-1]
    total_reward = 0
    np.random.seed(seed)

    # Set task
    task_name = vcfg['eval_task']
    task = tasks.names[task_name]()
    task.mode = mode
    
    # Set environment
    env.seed(seed)
    env.set_task(task)
    obs = env.reset()
    info = env.info
    reward = 0
    
    step = 0
    done = False
    
    # Rollout
    while (step <= task.max_steps) and not done:
        print(f"Step: {step} ({task.max_steps} max)")
        
        # Get batch
        if step == task.max_steps-1:
            batch = ds.process_goal((obs, None, reward, info), perturb_params=None)
        else:
            batch = ds.process_sample((obs, None, reward, info), augment=False)

        fig, axs = plt.subplots(2, 2, figsize=(13, 7))
        
        # Get color and depth inputs
        img = batch['img']
        img = torch.from_numpy(img)
        color = np.uint8(img.detach().cpu().numpy())[:,:,:3]
        color = color.transpose(1,0,2)
        depth = np.array(img.detach().cpu().numpy())[:,:,3]
        depth = depth.transpose(1,0)
        
        # Display input color
        axs[0,0].imshow(color)
        axs[0,0].axes.xaxis.set_visible(False)
        axs[0,0].axes.yaxis.set_visible(False)
        axs[0,0].set_title('Input RGB')
        
        # Display input depth
        axs[0,1].imshow(depth)
        axs[0,1].axes.xaxis.set_visible(False)
        axs[0,1].axes.yaxis.set_visible(False)        
        axs[0,1].set_title('Input Depth')
        
        # Display predicted pick affordance
        axs[1,0].imshow(color)
        axs[1,0].axes.xaxis.set_visible(False)
        axs[1,0].axes.yaxis.set_visible(False)
        axs[1,0].set_title('Pick Affordance')
        
        # Display predicted place affordance
        axs[1,1].imshow(color)
        axs[1,1].axes.xaxis.set_visible(False)
        axs[1,1].axes.yaxis.set_visible(False)
        axs[1,1].set_title('Place Affordance')
        
        # Get action predictions
        l = str(info['lang_goal'])
        act = agent.act(obs, info, goal=None)
        pick, place = act['pick'], act['place']
        
        # Visualize pick affordance
        pick_inp = {'inp_img': batch['img'], 'lang_goal': l}
        pick_conf = agent.attn_forward(pick_inp)[0]
        print("pick_conf:", pick_conf.shape, pick, place)
        # IPython.embed()
        logits = pick_conf.detach().cpu().numpy()

        pick_conf = pick_conf.detach().cpu().numpy()
        argmax = np.argmax(pick_conf)
        argmax = np.unravel_index(argmax, shape=pick_conf.shape)
        p0 = argmax[:2]

        p0_theta = (argmax[2] * (2 * np.pi / pick_conf.shape[2])) * -1.0
        
        line_len = 30
        pick0 = (pick[0] + line_len/2.0 * np.sin(p0_theta), pick[1] + line_len/2.0 * np.cos(p0_theta))
        pick1 = (pick[0] - line_len/2.0 * np.sin(p0_theta), pick[1] - line_len/2.0 * np.cos(p0_theta))

        if draw_grasp_lines:
            axs[1,0].plot((pick1[0], pick0[0]), (pick1[1], pick0[1]), color='r', linewidth=1)
        
        # Visualize place affordance
        place_inp = {'inp_img': batch['img'], 'p0': pick, 'lang_goal': l}
        place_conf = agent.trans_forward(place_inp)[0]

        place_conf = place_conf.permute(1, 2, 0)
        place_conf = place_conf.detach().cpu().numpy()
        argmax = np.argmax(place_conf)
        argmax = np.unravel_index(argmax, shape=place_conf.shape)
        p1_pix = argmax[:2]
        p1_theta = (argmax[2] * (2 * np.pi / place_conf.shape[2]) + p0_theta) * -1.0
        
        line_len = 30
        place0 = (place[0] + line_len/2.0 * np.sin(p1_theta), place[1] + line_len/2.0 * np.cos(p1_theta))
        place1 = (place[0] - line_len/2.0 * np.sin(p1_theta), place[1] - line_len/2.0 * np.cos(p1_theta))

        if draw_grasp_lines:
            axs[1,1].plot((place1[0], place0[0]), (place1[1], place0[1]), color='g', linewidth=1)
        
        # Overlay affordances on RGB input
        pick_logits_disp = np.uint8(logits * 255 * affordance_heatmap_scale).transpose(2,1,0)
        place_logits_disp = np.uint8(np.sum(place_conf, axis=2)[:,:,None] * 255 * affordance_heatmap_scale).transpose(1,0,2)# .transpose(1,2,0)    

        pick_logits_disp_masked = np.ma.masked_where(pick_logits_disp < 0, pick_logits_disp)
        place_logits_disp_masked = np.ma.masked_where(place_logits_disp < 0, place_logits_disp)
        # IPython.embed()

        axs[1][0].imshow(pick_logits_disp_masked, alpha=0.75)
        axs[1][1].imshow(place_logits_disp_masked, cmap='viridis', alpha=0.75)
        
        print(f"Lang Goal: {str(info['lang_goal'])}")
        print(os.getcwd())
        plt.savefig(f'./test_{step}.png')
        
        # Act with the predicted actions
        obs, reward, done, info = env.step(act)
        step += 1
        
    if done:
        print("Done. Success.")
    else:
        print("Max steps reached. Task failed.")