File size: 18,296 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import re
import subprocess
import tarfile
import time
import warnings
from dataclasses import dataclass, field
from typing import List, Optional
warnings.filterwarnings("ignore") # ignore warning
import pyrallis
import torch
from torchvision.utils import save_image
from tqdm import tqdm
from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger
# from diffusion.utils.misc import read_config
from tools.download import find_model
def set_env(seed=0, latent_size=256):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, latent_size, latent_size)
def get_dict_chunks(data, bs):
keys = []
for k in data:
keys.append(k)
if len(keys) == bs:
yield keys
keys = []
if keys:
yield keys
def create_tar(data_path):
tar_path = f"{data_path}.tar"
with tarfile.open(tar_path, "w") as tar:
tar.add(data_path, arcname=os.path.basename(data_path))
print(f"Created tar file: {tar_path}")
return tar_path
def delete_directory(exp_name):
if os.path.exists(exp_name):
subprocess.run(["rm", "-r", exp_name], check=True)
print(f"Deleted directory: {exp_name}")
@torch.inference_mode()
def visualize(items, bs, sample_steps, cfg_scale, pag_scale=1.0):
if isinstance(items, dict):
get_chunks = get_dict_chunks
else:
from diffusion.data.datasets.utils import get_chunks
generator = torch.Generator(device=device).manual_seed(args.seed)
tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
assert bs == 1
for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True):
# data prepare
prompts, hw, ar = (
[],
torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1),
torch.tensor([[1.0]], device=device).repeat(bs, 1),
)
prompt = data_dict[chunk[0]]["prompt"]
prompts = [
prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip()
] * args.sample_per_prompt
latent_size_h, latent_size_w = latent_size, latent_size
# check exists
save_file_name = f"{chunk[0]}_0.jpg" # 004971-0071_7.png
save_path = os.path.join(save_root, save_file_name)
if os.path.exists(save_path):
# make sure the noise is totally same
torch.randn(
len(prompts), config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator
)
continue
# prepare text feature
caption_token = tokenizer(
prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None]
emb_masks, null_y = caption_token.attention_mask, null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
# start sampling
with torch.no_grad():
n = len(prompts)
z = torch.randn(
n,
config.vae.vae_latent_dim,
latent_size,
latent_size,
device=device,
generator=generator,
)
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
if args.sampling_algo == "dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=cfg_scale,
model_kwargs=model_kwargs,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif args.sampling_algo == "sa-solver":
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=25,
batch_size=n,
shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=cfg_scale,
model_kwargs=model_kwargs,
)[0]
elif args.sampling_algo == "flow_euler":
flow_solver = FlowEuler(
model, condition=caption_embs, uncondition=null_y, cfg_scale=cfg_scale, model_kwargs=model_kwargs
)
samples = flow_solver.sample(
z,
steps=sample_steps,
)
elif args.sampling_algo == "flow_dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
guidance_type=guidance_type,
cfg_scale=cfg_scale,
pag_scale=pag_scale,
pag_applied_layers=pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
interval_guidance=args.interval_guidance,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=flow_shift,
)
else:
raise ValueError(f"{args.sampling_algo} is not defined")
samples = samples.to(weight_dtype)
samples = vae_decode(config.vae.vae_type, vae, samples)
torch.cuda.empty_cache()
os.umask(0o000)
for i in range(bs):
for j, sample in enumerate(samples):
save_file_name = f"{chunk[i]}_{j}.jpg"
save_path = os.path.join(save_root, save_file_name)
# logger.info(f"Saving path: {save_path}")
save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1))
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config")
return parser.parse_known_args()[0]
@dataclass
class SanaInference(SanaConfig):
config: str = ""
model_path: Optional[str] = field(default=None, metadata={"help": "Path to the model file (optional)"})
txt_file: str = "asset/samples.txt"
json_file: Optional[str] = None
sample_nums: int = 100_000
bs: int = 1
sample_per_prompt: int = 10
cfg_scale: float = 4.5
pag_scale: float = 1.0
sampling_algo: str = field(
default="flow_dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]}
)
seed: int = 0
dataset: str = "custom"
step: int = -1
add_label: str = ""
tar_and_del: bool = field(default=False, metadata={"help": "if tar and del the saved dir"})
exist_time_prefix: str = ""
gpu_id: int = 0
custom_image_size: Optional[int] = None
start_index: int = 0
end_index: int = 30_000
interval_guidance: List[float] = field(
default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"}
)
ablation_selections: Optional[List[float]] = field(
default=None, metadata={"help": "A list value, like [0, 1.] for ablation"}
)
ablation_key: Optional[str] = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]})
if_save_dirname: bool = field(
default=False,
metadata={"help": "if save img save dir name at wor_dir/metrics/tmp_time.time().txt for metric testing"},
)
if __name__ == "__main__":
args = get_args()
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)
args.image_size = config.model.image_size
if args.custom_image_size:
args.image_size = args.custom_image_size
print(f"custom_image_size: {args.image_size}")
set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = get_root_logger()
# only support fixed latent size currently
latent_size = args.image_size // config.vae.vae_downsample_rate
max_sequence_length = config.text_encoder.model_max_length
pe_interpolation = config.model.pe_interpolation
micro_condition = config.model.micro_condition
flow_shift = config.scheduler.flow_shift
pag_applied_layers = config.model.pag_applied_layers
guidance_type = "classifier-free_PAG"
assert (
isinstance(args.interval_guidance, list)
and len(args.interval_guidance) == 2
and args.interval_guidance[0] <= args.interval_guidance[1]
)
args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28}
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)
null_caption_token = tokenizer(
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"linear_head_dim": config.model.linear_head_dim,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
"use_fp32_attention": getattr(config.model, "fp32_attention", False),
}
model = build_model(config.model.model, **model_kwargs).to(device)
logger.info(
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
args.model_path = args.model_path or args.position_model_path
logger.info("Generating sample from ckpt: %s" % args.model_path)
state_dict = find_model(args.model_path)
if "pos_embed" in state_dict["state_dict"]:
del state_dict["state_dict"]["pos_embed"]
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
model.eval().to(weight_dtype)
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
args.sampling_algo = (
args.sampling_algo
if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
else "flow_euler"
)
work_dir = (
f"/{os.path.join(*args.model_path.split('/')[:-2])}"
if args.model_path.startswith("/")
else os.path.join(*args.model_path.split("/")[:-2])
)
dict_prompt = args.json_file is not None
if dict_prompt:
data_dict = json.load(open(args.json_file))
items = list(data_dict.keys())
else:
with open(args.txt_file) as f:
items = [item.strip() for item in f.readlines()]
logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples")
items = items[: max(0, args.sample_nums)]
items = items[max(0, args.start_index) : min(len(items), args.end_index)]
match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
epoch_name, step_name = match.groups() if match else ("unknown", "unknown")
img_save_dir = os.path.join(str(work_dir), "vis")
os.umask(0o000)
os.makedirs(img_save_dir, exist_ok=True)
logger.info(f"Sampler {args.sampling_algo}")
def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
save_root = os.path.join(
img_save_dir,
# f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_"
f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}"
f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
)
if args.pag_scale != 1.0:
save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
if flow_shift != 1.0:
save_root += f"_flowshift{flow_shift}"
if guidance_type != "classifier-free":
save_root += f"_{guidance_type}"
if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"
save_root += f"_imgnums{args.sample_nums}" + args.add_label
return save_root
def guidance_type_select(default_guidance_type, pag_scale, attn_type):
guidance_type = default_guidance_type
if not (pag_scale > 1.0 and attn_type == "linear"):
logger.info("Setting back to classifier-free")
guidance_type = "classifier-free"
return guidance_type
dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset
if args.ablation_selections and args.ablation_key:
for ablation_factor in args.ablation_selections:
setattr(args, args.ablation_key, eval(ablation_factor))
print(f"Setting {args.ablation_key}={eval(ablation_factor)}")
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
os.makedirs(save_root, exist_ok=True)
if args.if_save_dirname and args.gpu_id == 0:
# save at work_dir/metrics/tmp_xxx.txt for metrics testing
with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
f.write(os.path.basename(save_root))
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)
else:
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
os.makedirs(save_root, exist_ok=True)
if args.if_save_dirname and args.gpu_id == 0:
os.makedirs(f"{work_dir}/metrics", exist_ok=True)
# save at work_dir/metrics/tmp_xxx.txt for metrics testing
with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
f.write(os.path.basename(save_root))
visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)
if args.tar_and_del:
create_tar(save_root)
delete_directory(save_root)
|