File size: 18,296 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

import argparse
import json
import os
import re
import subprocess
import tarfile
import time
import warnings
from dataclasses import dataclass, field
from typing import List, Optional

warnings.filterwarnings("ignore")  # ignore warning

import pyrallis
import torch
from torchvision.utils import save_image
from tqdm import tqdm

from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger

# from diffusion.utils.misc import read_config
from tools.download import find_model


def set_env(seed=0, latent_size=256):
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)
    for _ in range(30):
        torch.randn(1, 4, latent_size, latent_size)


def get_dict_chunks(data, bs):
    keys = []
    for k in data:
        keys.append(k)
        if len(keys) == bs:
            yield keys
            keys = []
    if keys:
        yield keys


def create_tar(data_path):
    tar_path = f"{data_path}.tar"
    with tarfile.open(tar_path, "w") as tar:
        tar.add(data_path, arcname=os.path.basename(data_path))
    print(f"Created tar file: {tar_path}")
    return tar_path


def delete_directory(exp_name):
    if os.path.exists(exp_name):
        subprocess.run(["rm", "-r", exp_name], check=True)
        print(f"Deleted directory: {exp_name}")


@torch.inference_mode()
def visualize(items, bs, sample_steps, cfg_scale, pag_scale=1.0):
    if isinstance(items, dict):
        get_chunks = get_dict_chunks
    else:
        from diffusion.data.datasets.utils import get_chunks

    generator = torch.Generator(device=device).manual_seed(args.seed)
    tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
    assert bs == 1
    for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True):
        # data prepare
        prompts, hw, ar = (
            [],
            torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1),
            torch.tensor([[1.0]], device=device).repeat(bs, 1),
        )
        prompt = data_dict[chunk[0]]["prompt"]
        prompts = [
            prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip()
        ] * args.sample_per_prompt
        latent_size_h, latent_size_w = latent_size, latent_size

        # check exists
        save_file_name = f"{chunk[0]}_0.jpg"  # 004971-0071_7.png
        save_path = os.path.join(save_root, save_file_name)
        if os.path.exists(save_path):
            # make sure the noise is totally same
            torch.randn(
                len(prompts), config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator
            )
            continue

        # prepare text feature
        caption_token = tokenizer(
            prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
        ).to(device)
        caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None]
        emb_masks, null_y = caption_token.attention_mask, null_caption_embs.repeat(len(prompts), 1, 1)[:, None]

        # start sampling
        with torch.no_grad():
            n = len(prompts)
            z = torch.randn(
                n,
                config.vae.vae_latent_dim,
                latent_size,
                latent_size,
                device=device,
                generator=generator,
            )
            model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)

            if args.sampling_algo == "dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    cfg_scale=cfg_scale,
                    model_kwargs=model_kwargs,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform",
                    method="multistep",
                )
            elif args.sampling_algo == "sa-solver":
                sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
                samples = sa_solver.sample(
                    S=25,
                    batch_size=n,
                    shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w),
                    eta=1,
                    conditioning=caption_embs,
                    unconditional_conditioning=null_y,
                    unconditional_guidance_scale=cfg_scale,
                    model_kwargs=model_kwargs,
                )[0]
            elif args.sampling_algo == "flow_euler":
                flow_solver = FlowEuler(
                    model, condition=caption_embs, uncondition=null_y, cfg_scale=cfg_scale, model_kwargs=model_kwargs
                )
                samples = flow_solver.sample(
                    z,
                    steps=sample_steps,
                )
            elif args.sampling_algo == "flow_dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    guidance_type=guidance_type,
                    cfg_scale=cfg_scale,
                    pag_scale=pag_scale,
                    pag_applied_layers=pag_applied_layers,
                    model_type="flow",
                    model_kwargs=model_kwargs,
                    schedule="FLOW",
                    interval_guidance=args.interval_guidance,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform_flow",
                    method="multistep",
                    flow_shift=flow_shift,
                )
            else:
                raise ValueError(f"{args.sampling_algo} is not defined")

        samples = samples.to(weight_dtype)
        samples = vae_decode(config.vae.vae_type, vae, samples)
        torch.cuda.empty_cache()

        os.umask(0o000)
        for i in range(bs):
            for j, sample in enumerate(samples):
                save_file_name = f"{chunk[i]}_{j}.jpg"
                save_path = os.path.join(save_root, save_file_name)
                # logger.info(f"Saving path: {save_path}")
                save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1))


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, help="config")

    return parser.parse_known_args()[0]


@dataclass
class SanaInference(SanaConfig):
    config: str = ""
    model_path: Optional[str] = field(default=None, metadata={"help": "Path to the model file (optional)"})
    txt_file: str = "asset/samples.txt"
    json_file: Optional[str] = None
    sample_nums: int = 100_000
    bs: int = 1
    sample_per_prompt: int = 10
    cfg_scale: float = 4.5
    pag_scale: float = 1.0
    sampling_algo: str = field(
        default="flow_dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]}
    )
    seed: int = 0
    dataset: str = "custom"
    step: int = -1
    add_label: str = ""
    tar_and_del: bool = field(default=False, metadata={"help": "if tar and del the saved dir"})
    exist_time_prefix: str = ""
    gpu_id: int = 0
    custom_image_size: Optional[int] = None
    start_index: int = 0
    end_index: int = 30_000
    interval_guidance: List[float] = field(
        default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"}
    )
    ablation_selections: Optional[List[float]] = field(
        default=None, metadata={"help": "A list value, like [0, 1.] for ablation"}
    )
    ablation_key: Optional[str] = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]})
    if_save_dirname: bool = field(
        default=False,
        metadata={"help": "if save img save dir name at wor_dir/metrics/tmp_time.time().txt for metric testing"},
    )


if __name__ == "__main__":

    args = get_args()
    config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)

    args.image_size = config.model.image_size
    if args.custom_image_size:
        args.image_size = args.custom_image_size
        print(f"custom_image_size: {args.image_size}")

    set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger = get_root_logger()

    # only support fixed latent size currently
    latent_size = args.image_size // config.vae.vae_downsample_rate
    max_sequence_length = config.text_encoder.model_max_length
    pe_interpolation = config.model.pe_interpolation
    micro_condition = config.model.micro_condition
    flow_shift = config.scheduler.flow_shift
    pag_applied_layers = config.model.pag_applied_layers
    guidance_type = "classifier-free_PAG"
    assert (
        isinstance(args.interval_guidance, list)
        and len(args.interval_guidance) == 2
        and args.interval_guidance[0] <= args.interval_guidance[1]
    )
    args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
    sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28}
    sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
    if config.model.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif config.model.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
    elif config.model.mixed_precision == "fp32":
        weight_dtype = torch.float32
    else:
        raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
    logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")

    vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
    tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)

    null_caption_token = tokenizer(
        "", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
    ).to(device)
    null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]

    # model setting
    pred_sigma = getattr(config.scheduler, "pred_sigma", True)
    learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
    model_kwargs = {
        "input_size": latent_size,
        "pe_interpolation": config.model.pe_interpolation,
        "config": config,
        "model_max_length": config.text_encoder.model_max_length,
        "qk_norm": config.model.qk_norm,
        "micro_condition": config.model.micro_condition,
        "caption_channels": text_encoder.config.hidden_size,
        "y_norm": config.text_encoder.y_norm,
        "attn_type": config.model.attn_type,
        "ffn_type": config.model.ffn_type,
        "mlp_ratio": config.model.mlp_ratio,
        "mlp_acts": list(config.model.mlp_acts),
        "in_channels": config.vae.vae_latent_dim,
        "y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
        "use_pe": config.model.use_pe,
        "linear_head_dim": config.model.linear_head_dim,
        "pred_sigma": pred_sigma,
        "learn_sigma": learn_sigma,
        "use_fp32_attention": getattr(config.model, "fp32_attention", False),
    }
    model = build_model(config.model.model, **model_kwargs).to(device)
    logger.info(
        f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
    )
    args.model_path = args.model_path or args.position_model_path
    logger.info("Generating sample from ckpt: %s" % args.model_path)
    state_dict = find_model(args.model_path)
    if "pos_embed" in state_dict["state_dict"]:
        del state_dict["state_dict"]["pos_embed"]

    missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
    logger.warning(f"Missing keys: {missing}")
    logger.warning(f"Unexpected keys: {unexpected}")
    model.eval().to(weight_dtype)
    base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
    args.sampling_algo = (
        args.sampling_algo
        if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
        else "flow_euler"
    )

    work_dir = (
        f"/{os.path.join(*args.model_path.split('/')[:-2])}"
        if args.model_path.startswith("/")
        else os.path.join(*args.model_path.split("/")[:-2])
    )

    dict_prompt = args.json_file is not None
    if dict_prompt:
        data_dict = json.load(open(args.json_file))
        items = list(data_dict.keys())
    else:
        with open(args.txt_file) as f:
            items = [item.strip() for item in f.readlines()]
    logger.info(f"Eval first {min(args.sample_nums, len(items))}/{len(items)} samples")
    items = items[: max(0, args.sample_nums)]
    items = items[max(0, args.start_index) : min(len(items), args.end_index)]

    match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
    epoch_name, step_name = match.groups() if match else ("unknown", "unknown")

    img_save_dir = os.path.join(str(work_dir), "vis")
    os.umask(0o000)
    os.makedirs(img_save_dir, exist_ok=True)
    logger.info(f"Sampler {args.sampling_algo}")

    def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
        save_root = os.path.join(
            img_save_dir,
            # f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_"
            f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
            f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}"
            f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
        )

        if args.pag_scale != 1.0:
            save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
        if flow_shift != 1.0:
            save_root += f"_flowshift{flow_shift}"
        if guidance_type != "classifier-free":
            save_root += f"_{guidance_type}"
        if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
            save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"

        save_root += f"_imgnums{args.sample_nums}" + args.add_label
        return save_root

    def guidance_type_select(default_guidance_type, pag_scale, attn_type):
        guidance_type = default_guidance_type
        if not (pag_scale > 1.0 and attn_type == "linear"):
            logger.info("Setting back to classifier-free")
            guidance_type = "classifier-free"
        return guidance_type

    dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset
    if args.ablation_selections and args.ablation_key:
        for ablation_factor in args.ablation_selections:
            setattr(args, args.ablation_key, eval(ablation_factor))
            print(f"Setting {args.ablation_key}={eval(ablation_factor)}")
            sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
            guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)

            save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
            os.makedirs(save_root, exist_ok=True)
            if args.if_save_dirname and args.gpu_id == 0:
                # save at work_dir/metrics/tmp_xxx.txt for metrics testing
                with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
                    print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
                    f.write(os.path.basename(save_root))
            logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")

            visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)
    else:
        guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
        logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")

        save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
        os.makedirs(save_root, exist_ok=True)
        if args.if_save_dirname and args.gpu_id == 0:
            os.makedirs(f"{work_dir}/metrics", exist_ok=True)
            # save at work_dir/metrics/tmp_xxx.txt for metrics testing
            with open(f"{work_dir}/metrics/tmp_{dataset}_{time.time()}.txt", "w") as f:
                print(f"save tmp file at {work_dir}/metrics/tmp_{dataset}_{time.time()}.txt")
                f.write(os.path.basename(save_root))

        visualize(items, args.bs, sample_steps, args.cfg_scale, args.pag_scale)

        if args.tar_and_del:
            create_tar(save_root)
            delete_directory(save_root)