File size: 13,673 Bytes
d643072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import warnings
from dataclasses import dataclass, field
from typing import Optional, Tuple

import pyrallis
import torch
import torch.nn as nn

# Import the gemma2_patch from the zerogpu folder
from zerogpu.gemma2_patch import apply_patch
apply_patch()


warnings.filterwarnings("ignore")  # ignore warning


from diffusion import DPMS, FlowEuler
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger

# from diffusion.utils.misc import read_config
from tools.download import find_model


def guidance_type_select(default_guidance_type, pag_scale, attn_type):
    guidance_type = default_guidance_type
    if not (pag_scale > 1.0 and attn_type == "linear"):
        guidance_type = "classifier-free"
    return guidance_type


def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
    """Returns binned height and width."""
    ar = float(height / width)
    closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
    default_hw = ratios[closest_ratio]
    return int(default_hw[0]), int(default_hw[1])


@dataclass
class SanaInference(SanaConfig):
    config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml"  # config
    model_path: str = field(
        default="output/Sana_D20/SANA.pth", metadata={"help": "Path to the model file (positional)"}
    )
    output: str = "./output"
    bs: int = 1
    image_size: int = 1024
    cfg_scale: float = 5.0
    pag_scale: float = 2.0
    seed: int = 42
    step: int = -1
    custom_image_size: Optional[int] = None
    shield_model_path: str = field(
        default="google/shieldgemma-2b",
        metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."},
    )


class SanaPipeline(nn.Module):
    def __init__(
        self,
        config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml",
    ):
        super().__init__()
        config = pyrallis.load(SanaInference, open(config))
        self.args = self.config = config

        # set some hyper-parameters
        self.image_size = self.config.model.image_size

        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        logger = get_root_logger()
        self.logger = logger
        self.progress_fn = lambda progress, desc: None

        self.latent_size = self.image_size // config.vae.vae_downsample_rate
        self.max_sequence_length = config.text_encoder.model_max_length
        self.flow_shift = config.scheduler.flow_shift
        guidance_type = "classifier-free_PAG"

        if config.model.mixed_precision == "fp16":
            weight_dtype = torch.float16
        elif config.model.mixed_precision == "bf16":
            weight_dtype = torch.bfloat16
        elif config.model.mixed_precision == "fp32":
            weight_dtype = torch.float32
        else:
            raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
        self.weight_dtype = weight_dtype

        self.base_ratios = eval(f"ASPECT_RATIO_{self.image_size}_TEST")
        self.vis_sampler = self.config.scheduler.vis_sampler
        logger.info(f"Sampler {self.vis_sampler}, flow_shift: {self.flow_shift}")
        self.guidance_type = guidance_type_select(guidance_type, self.args.pag_scale, config.model.attn_type)
        logger.info(f"Inference with {self.weight_dtype}, PAG guidance layer: {self.config.model.pag_applied_layers}")

        # 1. build vae and text encoder
        self.vae = self.build_vae(config.vae)
        self.tokenizer, self.text_encoder = self.build_text_encoder(config.text_encoder)

        # 2. build Sana model
        self.model = self.build_sana_model(config).to(self.device)

        # 3. pre-compute null embedding
        with torch.no_grad():
            null_caption_token = self.tokenizer(
                "", max_length=self.max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
            ).to(self.device)
            self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]


    def build_vae(self, config):
        vae = get_vae(config.vae_type, config.vae_pretrained, self.device).to(self.weight_dtype)
        return vae

    def build_text_encoder(self, config):
        tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder_name, device=self.device)
        return tokenizer, text_encoder

    def build_sana_model(self, config):
        # model setting
        pred_sigma = getattr(config.scheduler, "pred_sigma", True)
        learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
        model_kwargs = {
            "input_size": self.latent_size,
            "pe_interpolation": config.model.pe_interpolation,
            "config": config,
            "model_max_length": config.text_encoder.model_max_length,
            "qk_norm": config.model.qk_norm,
            "micro_condition": config.model.micro_condition,
            "caption_channels": self.text_encoder.config.hidden_size,
            "y_norm": config.text_encoder.y_norm,
            "attn_type": config.model.attn_type,
            "ffn_type": config.model.ffn_type,
            "mlp_ratio": config.model.mlp_ratio,
            "mlp_acts": list(config.model.mlp_acts),
            "in_channels": config.vae.vae_latent_dim,
            "y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
            "use_pe": config.model.use_pe,
            "pred_sigma": pred_sigma,
            "learn_sigma": learn_sigma,
            "use_fp32_attention": config.model.get("fp32_attention", False) and config.model.mixed_precision != "bf16",
        }
        model = build_model(config.model.model, **model_kwargs)
        model = model.to(self.weight_dtype)

        self.logger.info(f"use_fp32_attention: {model.fp32_attention}")
        self.logger.info(
            f"{model.__class__.__name__}:{config.model.model},"
            f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
        )
        return model

    def from_pretrained(self, model_path):
        state_dict = find_model(model_path)
        state_dict = state_dict.get("state_dict", state_dict)
        if "pos_embed" in state_dict:
            del state_dict["pos_embed"]
        missing, unexpected = self.model.load_state_dict(state_dict, strict=False)
        self.model.eval().to(self.weight_dtype)

        self.logger.info("Generating sample from ckpt: %s" % model_path)
        self.logger.warning(f"Missing keys: {missing}")
        self.logger.warning(f"Unexpected keys: {unexpected}")

    def register_progress_bar(self, progress_fn=None):
        self.progress_fn = progress_fn if progress_fn is not None else self.progress_fn

    @torch.inference_mode()
    def forward(
        self,
        prompt=None,
        height=1024,
        width=1024,
        negative_prompt="",
        num_inference_steps=20,
        guidance_scale=5,
        pag_guidance_scale=2.5,
        num_images_per_prompt=1,
        generator=torch.Generator().manual_seed(42),
        latents=None,
    ):
        self.ori_height, self.ori_width = height, width
        self.height, self.width = classify_height_width_bin(height, width, ratios=self.base_ratios)
        self.latent_size_h, self.latent_size_w = (
            self.height // self.config.vae.vae_downsample_rate,
            self.width // self.config.vae.vae_downsample_rate,
        )
        self.guidance_type = guidance_type_select(self.guidance_type, pag_guidance_scale, self.config.model.attn_type)

        # 1. pre-compute negative embedding
        if negative_prompt != "":
            null_caption_token = self.tokenizer(
                negative_prompt,
                max_length=self.max_sequence_length,
                padding="max_length",
                truncation=True,
                return_tensors="pt",
            ).to(self.device)
            self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[
                0
            ]

        if prompt is None:
            prompt = [""]
        prompts = prompt if isinstance(prompt, list) else [prompt]
        samples = []

        for prompt in prompts:
            # data prepare
            prompts, hw, ar = (
                [],
                torch.tensor([[self.image_size, self.image_size]], dtype=torch.float, device=self.device).repeat(
                    num_images_per_prompt, 1
                ),
                torch.tensor([[1.0]], device=self.device).repeat(num_images_per_prompt, 1),
            )

            for _ in range(num_images_per_prompt):
                prompts.append(prepare_prompt_ar(prompt, self.base_ratios, device=self.device, show=False)[0].strip())

            with torch.no_grad():
                # prepare text feature
                if not self.config.text_encoder.chi_prompt:
                    max_length_all = self.config.text_encoder.model_max_length
                    prompts_all = prompts
                else:
                    chi_prompt = "\n".join(self.config.text_encoder.chi_prompt)
                    prompts_all = [chi_prompt + prompt for prompt in prompts]
                    num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
                    max_length_all = (
                        num_chi_prompt_tokens + self.config.text_encoder.model_max_length - 2
                    )  # magic number 2: [bos], [_]

                caption_token = self.tokenizer(
                    prompts_all,
                    max_length=max_length_all,
                    padding="max_length",
                    truncation=True,
                    return_tensors="pt",
                ).to(device=self.device)
                select_index = [0] + list(range(-self.config.text_encoder.model_max_length + 1, 0))
                caption_embs = self.text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][
                    :, :, select_index
                ].to(self.weight_dtype)
                emb_masks = caption_token.attention_mask[:, select_index]
                null_y = self.null_caption_embs.repeat(len(prompts), 1, 1)[:, None].to(self.weight_dtype)

                n = len(prompts)
                if latents is None:
                    z = torch.randn(
                        n,
                        self.config.vae.vae_latent_dim,
                        self.latent_size_h,
                        self.latent_size_w,
                        generator=generator,
                        device=self.device,
                    )
                else:
                    z = latents.to(self.device)
                model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
                if self.vis_sampler == "flow_euler":
                    flow_solver = FlowEuler(
                        self.model,
                        condition=caption_embs,
                        uncondition=null_y,
                        cfg_scale=guidance_scale,
                        model_kwargs=model_kwargs,
                    )
                    sample = flow_solver.sample(
                        z,
                        steps=num_inference_steps,
                    )
                elif self.vis_sampler == "flow_dpm-solver":
                    scheduler = DPMS(
                        self.model,
                        condition=caption_embs,
                        uncondition=null_y,
                        guidance_type=self.guidance_type,
                        cfg_scale=guidance_scale,
                        pag_scale=pag_guidance_scale,
                        pag_applied_layers=self.config.model.pag_applied_layers,
                        model_type="flow",
                        model_kwargs=model_kwargs,
                        schedule="FLOW",
                    )
                    scheduler.register_progress_bar(self.progress_fn)
                    sample = scheduler.sample(
                        z,
                        steps=num_inference_steps,
                        order=2,
                        skip_type="time_uniform_flow",
                        method="multistep",
                        flow_shift=self.flow_shift,
                    )

            sample = sample.to(self.weight_dtype)
            with torch.no_grad():
                sample = vae_decode(self.config.vae.vae_type, self.vae, sample)

            sample = resize_and_crop_tensor(sample, self.ori_width, self.ori_height)
            samples.append(sample)

            return sample

        return samples