File size: 13,673 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import warnings
from dataclasses import dataclass, field
from typing import Optional, Tuple
import pyrallis
import torch
import torch.nn as nn
# Import the gemma2_patch from the zerogpu folder
from zerogpu.gemma2_patch import apply_patch
apply_patch()
warnings.filterwarnings("ignore") # ignore warning
from diffusion import DPMS, FlowEuler
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST, ASPECT_RATIO_2048_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger
# from diffusion.utils.misc import read_config
from tools.download import find_model
def guidance_type_select(default_guidance_type, pag_scale, attn_type):
guidance_type = default_guidance_type
if not (pag_scale > 1.0 and attn_type == "linear"):
guidance_type = "classifier-free"
return guidance_type
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@dataclass
class SanaInference(SanaConfig):
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config
model_path: str = field(
default="output/Sana_D20/SANA.pth", metadata={"help": "Path to the model file (positional)"}
)
output: str = "./output"
bs: int = 1
image_size: int = 1024
cfg_scale: float = 5.0
pag_scale: float = 2.0
seed: int = 42
step: int = -1
custom_image_size: Optional[int] = None
shield_model_path: str = field(
default="google/shieldgemma-2b",
metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."},
)
class SanaPipeline(nn.Module):
def __init__(
self,
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml",
):
super().__init__()
config = pyrallis.load(SanaInference, open(config))
self.args = self.config = config
# set some hyper-parameters
self.image_size = self.config.model.image_size
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger = get_root_logger()
self.logger = logger
self.progress_fn = lambda progress, desc: None
self.latent_size = self.image_size // config.vae.vae_downsample_rate
self.max_sequence_length = config.text_encoder.model_max_length
self.flow_shift = config.scheduler.flow_shift
guidance_type = "classifier-free_PAG"
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
self.weight_dtype = weight_dtype
self.base_ratios = eval(f"ASPECT_RATIO_{self.image_size}_TEST")
self.vis_sampler = self.config.scheduler.vis_sampler
logger.info(f"Sampler {self.vis_sampler}, flow_shift: {self.flow_shift}")
self.guidance_type = guidance_type_select(guidance_type, self.args.pag_scale, config.model.attn_type)
logger.info(f"Inference with {self.weight_dtype}, PAG guidance layer: {self.config.model.pag_applied_layers}")
# 1. build vae and text encoder
self.vae = self.build_vae(config.vae)
self.tokenizer, self.text_encoder = self.build_text_encoder(config.text_encoder)
# 2. build Sana model
self.model = self.build_sana_model(config).to(self.device)
# 3. pre-compute null embedding
with torch.no_grad():
null_caption_token = self.tokenizer(
"", max_length=self.max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(self.device)
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]
def build_vae(self, config):
vae = get_vae(config.vae_type, config.vae_pretrained, self.device).to(self.weight_dtype)
return vae
def build_text_encoder(self, config):
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder_name, device=self.device)
return tokenizer, text_encoder
def build_sana_model(self, config):
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": self.latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": self.text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
"use_fp32_attention": config.model.get("fp32_attention", False) and config.model.mixed_precision != "bf16",
}
model = build_model(config.model.model, **model_kwargs)
model = model.to(self.weight_dtype)
self.logger.info(f"use_fp32_attention: {model.fp32_attention}")
self.logger.info(
f"{model.__class__.__name__}:{config.model.model},"
f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
return model
def from_pretrained(self, model_path):
state_dict = find_model(model_path)
state_dict = state_dict.get("state_dict", state_dict)
if "pos_embed" in state_dict:
del state_dict["pos_embed"]
missing, unexpected = self.model.load_state_dict(state_dict, strict=False)
self.model.eval().to(self.weight_dtype)
self.logger.info("Generating sample from ckpt: %s" % model_path)
self.logger.warning(f"Missing keys: {missing}")
self.logger.warning(f"Unexpected keys: {unexpected}")
def register_progress_bar(self, progress_fn=None):
self.progress_fn = progress_fn if progress_fn is not None else self.progress_fn
@torch.inference_mode()
def forward(
self,
prompt=None,
height=1024,
width=1024,
negative_prompt="",
num_inference_steps=20,
guidance_scale=5,
pag_guidance_scale=2.5,
num_images_per_prompt=1,
generator=torch.Generator().manual_seed(42),
latents=None,
):
self.ori_height, self.ori_width = height, width
self.height, self.width = classify_height_width_bin(height, width, ratios=self.base_ratios)
self.latent_size_h, self.latent_size_w = (
self.height // self.config.vae.vae_downsample_rate,
self.width // self.config.vae.vae_downsample_rate,
)
self.guidance_type = guidance_type_select(self.guidance_type, pag_guidance_scale, self.config.model.attn_type)
# 1. pre-compute negative embedding
if negative_prompt != "":
null_caption_token = self.tokenizer(
negative_prompt,
max_length=self.max_sequence_length,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(self.device)
self.null_caption_embs = self.text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[
0
]
if prompt is None:
prompt = [""]
prompts = prompt if isinstance(prompt, list) else [prompt]
samples = []
for prompt in prompts:
# data prepare
prompts, hw, ar = (
[],
torch.tensor([[self.image_size, self.image_size]], dtype=torch.float, device=self.device).repeat(
num_images_per_prompt, 1
),
torch.tensor([[1.0]], device=self.device).repeat(num_images_per_prompt, 1),
)
for _ in range(num_images_per_prompt):
prompts.append(prepare_prompt_ar(prompt, self.base_ratios, device=self.device, show=False)[0].strip())
with torch.no_grad():
# prepare text feature
if not self.config.text_encoder.chi_prompt:
max_length_all = self.config.text_encoder.model_max_length
prompts_all = prompts
else:
chi_prompt = "\n".join(self.config.text_encoder.chi_prompt)
prompts_all = [chi_prompt + prompt for prompt in prompts]
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
max_length_all = (
num_chi_prompt_tokens + self.config.text_encoder.model_max_length - 2
) # magic number 2: [bos], [_]
caption_token = self.tokenizer(
prompts_all,
max_length=max_length_all,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(device=self.device)
select_index = [0] + list(range(-self.config.text_encoder.model_max_length + 1, 0))
caption_embs = self.text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][
:, :, select_index
].to(self.weight_dtype)
emb_masks = caption_token.attention_mask[:, select_index]
null_y = self.null_caption_embs.repeat(len(prompts), 1, 1)[:, None].to(self.weight_dtype)
n = len(prompts)
if latents is None:
z = torch.randn(
n,
self.config.vae.vae_latent_dim,
self.latent_size_h,
self.latent_size_w,
generator=generator,
device=self.device,
)
else:
z = latents.to(self.device)
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
if self.vis_sampler == "flow_euler":
flow_solver = FlowEuler(
self.model,
condition=caption_embs,
uncondition=null_y,
cfg_scale=guidance_scale,
model_kwargs=model_kwargs,
)
sample = flow_solver.sample(
z,
steps=num_inference_steps,
)
elif self.vis_sampler == "flow_dpm-solver":
scheduler = DPMS(
self.model,
condition=caption_embs,
uncondition=null_y,
guidance_type=self.guidance_type,
cfg_scale=guidance_scale,
pag_scale=pag_guidance_scale,
pag_applied_layers=self.config.model.pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
)
scheduler.register_progress_bar(self.progress_fn)
sample = scheduler.sample(
z,
steps=num_inference_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=self.flow_shift,
)
sample = sample.to(self.weight_dtype)
with torch.no_grad():
sample = vae_decode(self.config.vae.vae_type, self.vae, sample)
sample = resize_and_crop_tensor(sample, self.ori_width, self.ori_height)
samples.append(sample)
return sample
return samples
|