Spaces:
Sleeping
Sleeping
File size: 5,557 Bytes
b5fadc4 69067ae 7467739 b5fadc4 9061ed1 d472778 f81f6f3 9061ed1 0197ed3 69067ae d472778 1547e12 7494646 1547e12 7494646 1547e12 7467739 69067ae 7467739 b5fadc4 7467739 adb5e2a 7467739 685e8d2 8994492 b5fadc4 8994492 b5fadc4 9061ed1 8994492 b5fadc4 9061ed1 1547e12 a3e60d6 f81f6f3 c36f3c7 f81f6f3 c36f3c7 f81f6f3 c36f3c7 7b35e8c f81f6f3 7b35e8c f81f6f3 c36f3c7 f81f6f3 e0fd1d2 69067ae 7467739 69067ae 7467739 69067ae 7467739 8ab530a 69067ae b5fadc4 8ab530a 7494646 8994492 b5fadc4 8994492 b5fadc4 8994492 b5fadc4 9061ed1 f81f6f3 c36f3c7 e0fd1d2 c36f3c7 e0fd1d2 c36f3c7 e0fd1d2 c36f3c7 7494646 e0fd1d2 9061ed1 0197ed3 8994492 69067ae 9061ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import torch
from flask import Flask, render_template, request, jsonify
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from simple_salesforce import Salesforce # Import Salesforce connection
import re
from waitress import serve
app = Flask(__name__)
# Salesforce connection using provided credentials
sf_username = 'diggavalli98@gmail.com'
sf_password = 'Sati@1020'
sf_token = 'sSSjyhInIsUohKpG8sHzty2q'
# Establish Salesforce connection
try:
sf = Salesforce(username=sf_username, password=sf_password, security_token=sf_token)
print("Connected to Salesforce successfully!")
except Exception as e:
print(f"Failed to connect to Salesforce: {str(e)}")
# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1)
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
audio.export(output_path, format="wav")
except Exception as e:
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration
return len(nonsilent_parts) == 0 # If no speech detected
# Extract name, email, and phone number from transcribed text
def extract_name_email_phone(text):
# Regex for basic email and phone number
email = re.search(r'\S+@\S+', text)
phone = re.search(r'\+?\d{10,15}', text) # Consider different formats for phone numbers
name = text.split(' ')[0] # Simplified assumption that name is the first word
email = email.group(0) if email else "unknown@domain.com"
phone = phone.group(0) if phone else "0000000000"
return name, email, phone
# Function to create Salesforce record
def create_salesforce_record(name, email, phone_number):
try:
# Create the record in Salesforce
customer_login = sf.Customer_Login__c.create({
'Name': name,
'Email__c': email,
'Phone_Number__c': phone_number
})
# Log the response from Salesforce
if customer_login.get('id'):
print(f"Record created successfully with ID: {customer_login['id']}")
return customer_login
else:
print("Record creation failed: No ID returned")
return {"error": "Record creation failed: No ID returned"}
except Exception as e:
print(f"Error creating Salesforce record: {str(e)}")
return {"error": f"Failed to create record in Salesforce: {str(e)}"}
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input.wav")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert to WAV
convert_to_wav(input_audio_path, output_audio_path)
# Check for silence
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
# Use Whisper ASR model for transcription
result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
transcribed_text = result["text"].strip().capitalize()
# Extract name, email, and phone number from the transcribed text
name, email, phone_number = extract_name_email_phone(transcribed_text)
# Create record in Salesforce
salesforce_response = create_salesforce_record(name, email, phone_number)
# Check if the response contains an error
if "error" in salesforce_response:
print(f"Error creating record in Salesforce: {salesforce_response['error']}")
return jsonify(salesforce_response), 500
print(f"Salesforce Response: {salesforce_response}")
return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})
except Exception as e:
print(f"Error in transcribing or processing: {str(e)}")
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Start Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)
|