File size: 10,949 Bytes
27d8a02
 
 
 
 
7d8ec5e
27d8a02
6916a8a
822fee8
5fc5e6a
0258ba7
5fc5e6a
 
822fee8
 
27d8a02
19d8d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e3ea5
822fee8
27d8a02
df97270
 
27d8a02
3dfd15f
aadc32d
 
 
 
27d8a02
 
 
aadc32d
 
 
27d8a02
aadc32d
 
 
0efb9f9
6916a8a
 
9c8ba2d
aadc32d
6916a8a
 
aadc32d
 
6916a8a
aadc32d
 
 
 
 
 
 
6916a8a
 
aadc32d
 
 
 
 
 
6916a8a
aadc32d
 
6916a8a
aadc32d
 
6916a8a
aadc32d
 
6916a8a
aadc32d
6916a8a
 
 
 
 
aadc32d
 
6916a8a
 
aadc32d
 
6916a8a
aadc32d
6916a8a
 
aadc32d
6916a8a
 
aadc32d
 
6916a8a
 
9c8ba2d
6916a8a
9c8ba2d
aadc32d
826aebe
6916a8a
aadc32d
826aebe
 
 
aadc32d
 
826aebe
aadc32d
 
826aebe
 
 
 
 
 
aadc32d
 
826aebe
 
 
 
 
aadc32d
 
505497c
826aebe
6916a8a
826aebe
 
aadc32d
7e4e6e0
 
 
aadc32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4e6e0
aadc32d
 
7e4e6e0
aadc32d
 
7e4e6e0
aadc32d
7e4e6e0
 
aadc32d
 
7e4e6e0
aadc32d
7e4e6e0
 
aadc32d
 
826aebe
bd14ff7
7e4e6e0
aadc32d
 
7e4e6e0
 
 
 
 
 
aadc32d
 
7e4e6e0
 
aadc32d
7e4e6e0
aadc32d
 
7e4e6e0
 
45e6457
7e4e6e0
 
aadc32d
7e4e6e0
aadc32d
eb71bff
 
aadc32d
 
eb71bff
aadc32d
 
eb71bff
aadc32d
eb71bff
aadc32d
7e4e6e0
27d8a02
aadc32d
27d8a02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aadc32d
822fee8
 
aadc32d
822fee8
 
27d8a02
822fee8
 
 
27d8a02
 
822fee8
c4e3ea5
5fc5e6a
27d8a02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import shutil
import base64
import time
import concurrent.futures
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
from dotenv import load_dotenv
import gradio as gr

# Load environment variables from .env file
load_dotenv()

# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')

# Initialize Salesforce connection
try:
    sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
    sf = None
    print(f"Failed to connect to Salesforce: {str(e)}")

# Load BLIP model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval().to(device)

# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
    if image.mode != "RGB":
        image = image.convert("RGB")

    # Resize for faster processing
    image = image.resize((224, 224))  # Adjust to smaller resolution for faster inference
    
    # Preprocess the image and generate a caption
    inputs = processor(image, return_tensors="pt").to(device, torch.float16)
    output = model.generate(**inputs, max_length=50)
    caption = processor.decode(output[0], skip_special_tokens=True)
    
    return caption

# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
    try:
        # Create a PDF document
        doc = SimpleDocTemplate(filename, pagesize=letter)
        styles = getSampleStyleSheet()
        
        # Define custom styles
        title_style = ParagraphStyle(
            name='Title',
            fontSize=16,
            leading=20,
            alignment=1,  # Center
            spaceAfter=20,
            textColor=colors.black,
            fontName='Helvetica-Bold'
        )
        body_style = ParagraphStyle(
            name='Body',
            fontSize=12,
            leading=14,
            spaceAfter=10,
            textColor=colors.black,
            fontName='Helvetica'
        )
        
        # Build the PDF content
        flowables = []
        
        # Add title
        flowables.append(Paragraph("Daily Progress Report", title_style))
        
        # Split DPR text into lines and add as paragraphs (excluding descriptions for images)
        for line in dpr_text.split('\n'):
            # Replace problematic characters for PDF
            line = line.replace('\u2019', "'").replace('\u2018', "'")
            if line.strip():
                flowables.append(Paragraph(line, body_style))
            else:
                flowables.append(Spacer(1, 12))
        
        # Add images and captions in the correct order (no need to add description to dpr_text again)
        for img_path, caption in zip(image_paths, captions):
            try:
                # Add image first
                img = PDFImage(img_path, width=200, height=150)  # Adjust image size if needed
                flowables.append(img)
                # Add description below the image
                description = f"Description: {caption}"
                flowables.append(Paragraph(description, body_style))
                flowables.append(Spacer(1, 12))  # Add some space between images
            except Exception as e:
                flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
        
        # Build the PDF
        doc.build(flowables)
        return f"PDF saved successfully as {filename}", filename
    except Exception as e:
        return f"Error saving PDF: {str(e)}", None

# Function to upload a file to Salesforce as ContentVersion
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
    try:
        # Read file content and encode in base64
        with open(file_path, 'rb') as f:
            file_content = f.read()
        file_content_b64 = base64.b64encode(file_content).decode('utf-8')
        
        # Set description based on file type
        description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
        
        # Create ContentVersion
        content_version = sf_connection.ContentVersion.create({
            'Title': filename,
            'PathOnClient': filename,
            'VersionData': file_content_b64,
            'Description': description
        })
        
        # Get ContentDocumentId
        content_version_id = content_version['id']
        content_document = sf_connection.query(
            f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
        )
        content_document_id = content_document['records'][0]['ContentDocumentId']
        
        # Generate a valid Salesforce URL for the ContentDocument
        content_document_url = f"https://{sf_connection.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
        return content_document_id, content_document_url, f"File {filename} uploaded successfully"
    except Exception as e:
        return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"

# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
    dpr_text = []
    captions = []
    image_paths = []
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    # Add header to the DPR
    dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
    
    # Process images in parallel for faster performance
    with concurrent.futures.ThreadPoolExecutor() as executor:
        results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
    
    for i, file in enumerate(files):
        caption = results[i]
        captions.append(caption)
        
        # Generate DPR section for this image with dynamic caption
        dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
        dpr_text.append(dpr_section)
        
        # Save image path for embedding in the report
        image_paths.append(file.name)
    
    # Combine DPR text
    dpr_output = "\n".join(dpr_text)
    
    # Generate PDF filename with timestamp
    pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
    
    # Save DPR text to PDF
    pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
    
    if sf and pdf_filepath:
        try:
            # Create Daily_Progress_Reports__c record
            report_description = "; ".join(captions)[:255]  # Concatenate captions, limit to 255 chars
            dpr_record = sf.Daily_Progress_Reports__c.create({
                'Detected_Activities__c': report_description  # Store in Detected_Activities__c field
            })
            dpr_record_id = dpr_record['id']
            
            # Upload PDF to Salesforce
            pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
                pdf_filepath, pdf_filename, sf, "pdf"
            )
            
            # Link PDF to DPR record
            if pdf_content_document_id:
                sf.ContentDocumentLink.create({
                    'ContentDocumentId': pdf_content_document_id,
                    'LinkedEntityId': dpr_record_id,
                    'ShareType': 'V'
                })
            
            # Update the DPR record with the PDF URL
            if pdf_url:
                sf.Daily_Progress_Reports__c.update(dpr_record_id, {
                    'PDF_URL__c': pdf_url  # Storing the PDF URL correctly
                })
            
            # Upload images to Salesforce and link them to DPR record
            for file in files:
                image_filename = os.path.basename(file.name)
                image_content_document_id, image_url, image_upload_result = upload_file_to_salesforce(
                    file.name, image_filename, sf, "image"
                )
                
                if image_content_document_id:
                    # Link image to the Daily Progress Report record (DPR) using ContentDocumentLink
                    sf.ContentDocumentLink.create({
                        'ContentDocumentId': image_content_document_id,
                        'LinkedEntityId': dpr_record_id,  # Link image to DPR record
                        'ShareType': 'V'  # 'V' means Viewer access
                    })
                    
                    # Now, update the DPR record with the ContentDocumentId in the Site_Images field (if it's a text or URL field)
                    sf.Daily_Progress_Reports__c.update(dpr_record_id, {
                        'Site_Images__c': image_content_document_id  # Storing the ContentDocumentId directly
                    })
                        
        except Exception as e:
            pass  # No output for Salesforce errors now
    
    # Return the PDF file for Gradio download (using shutil to copy and return the file)
    if pdf_filepath:
        # Copy the PDF file to a temporary directory for Gradio to serve it
        temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
        shutil.copy(pdf_filepath, temp_pdf_path)
        
        # Only return the DPR output and the PDF file path, excluding Salesforce upload details
        return (
            dpr_output + f"\n\n{pdf_result}",  # Removed Salesforce upload status
            temp_pdf_path  # Returning the file path for download
        )
    else:
        return (
            dpr_output + f"\n\n{pdf_result}",  # Removed Salesforce upload status
            None
        )

# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
    fn=generate_dpr,
    inputs=gr.Files(type="filepath", label="Upload Site Photos"),
    outputs=[
        gr.Textbox(label="Daily Progress Report"),
        gr.File(label="Download PDF", interactive=False)
    ],
    title="Daily Progress Report Generator",
    description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
    allow_flagging="never",
    css="#gradio-share-link-button-0 { display: none !important; }"
)

if __name__ == "__main__":
    iface.launch()