File size: 21,508 Bytes
552ebb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#!/usr/bin/env python3
"""

πŸ§ͺ VAD Demo - Pre-deployment Testing & Optimization Script



This script helps you test and optimize your VAD demo before deploying

to Hugging Face Spaces for your WASPAA 2025 presentation.



Usage:

    python test_and_optimize.py --test-all

    python test_and_optimize.py --optimize-models

    python test_and_optimize.py --benchmark

"""

import sys
import time
import traceback
import argparse
import numpy as np
import torch
import psutil
import subprocess
from pathlib import Path
from typing import Dict, List, Tuple
import warnings
warnings.filterwarnings('ignore')

# ===== PERFORMANCE TESTING =====

class VADTester:
    """Comprehensive testing suite for VAD demo"""
    
    def __init__(self):
        self.test_results = {}
        self.performance_metrics = {}
        
    def test_dependencies(self) -> bool:
        """Test all required dependencies"""
        print("πŸ” Testing Dependencies...")
        
        dependencies = [
            'gradio', 'numpy', 'torch', 'librosa', 
            'plotly', 'scipy', 'soundfile'
        ]
        
        missing = []
        for dep in dependencies:
            try:
                __import__(dep)
                print(f"  βœ… {dep}")
            except ImportError:
                print(f"  ❌ {dep}")
                missing.append(dep)
        
        if missing:
            print(f"\n⚠️  Missing dependencies: {missing}")
            print("Run: pip install " + " ".join(missing))
            return False
            
        print("βœ… All dependencies available")
        return True
    
    def test_audio_generation(self) -> bool:
        """Test synthetic audio generation"""
        print("\n🎡 Testing Audio Generation...")
        
        try:
            # Generate test audio signals
            sample_rate = 16000
            duration = 4.0
            t = np.linspace(0, duration, int(sample_rate * duration))
            
            # Test signals
            test_signals = {
                'silence': np.zeros_like(t),
                'noise': np.random.normal(0, 0.1, len(t)),
                'tone': np.sin(2 * np.pi * 440 * t) * 0.5,
                'speech_sim': np.sin(2 * np.pi * 200 * t) * np.exp(-t/2) * 0.3
            }
            
            for name, signal in test_signals.items():
                if len(signal) == int(sample_rate * duration):
                    print(f"  βœ… {name} signal generated")
                else:
                    print(f"  ❌ {name} signal incorrect length")
                    return False
                    
            self.test_audio = test_signals
            print("βœ… Audio generation working")
            return True
            
        except Exception as e:
            print(f"❌ Audio generation failed: {e}")
            return False
    
    def test_model_loading(self) -> Dict[str, bool]:
        """Test individual model loading"""
        print("\nπŸ€– Testing Model Loading...")
        
        # Import models from main app
        try:
            sys.path.append('.')
            from app import (OptimizedSileroVAD, OptimizedWebRTCVAD, 
                           OptimizedEPANNs, OptimizedAST, OptimizedPANNs)
            
            models = {
                'Silero-VAD': OptimizedSileroVAD,
                'WebRTC-VAD': OptimizedWebRTCVAD,
                'E-PANNs': OptimizedEPANNs,
                'AST': OptimizedAST,
                'PANNs': OptimizedPANNs
            }
            
            results = {}
            for name, model_class in models.items():
                try:
                    start_time = time.time()
                    model = model_class()
                    load_time = time.time() - start_time
                    
                    print(f"  βœ… {name} loaded ({load_time:.2f}s)")
                    results[name] = True
                    
                except Exception as e:
                    print(f"  ❌ {name} failed: {str(e)[:50]}...")
                    results[name] = False
            
            return results
            
        except ImportError as e:
            print(f"❌ Cannot import models from app.py: {e}")
            return {}
    
    def test_model_inference(self, model_results: Dict[str, bool]) -> Dict[str, float]:
        """Test model inference speed"""
        print("\n⚑ Testing Model Inference...")
        
        if not hasattr(self, 'test_audio'):
            print("❌ No test audio available")
            return {}
        
        try:
            from app import (OptimizedSileroVAD, OptimizedWebRTCVAD, 
                           OptimizedEPANNs, OptimizedAST, OptimizedPANNs)
            
            models = {}
            if model_results.get('Silero-VAD', False):
                models['Silero-VAD'] = OptimizedSileroVAD()
            if model_results.get('WebRTC-VAD', False):
                models['WebRTC-VAD'] = OptimizedWebRTCVAD()
            if model_results.get('E-PANNs', False):
                models['E-PANNs'] = OptimizedEPANNs()
            if model_results.get('AST', False):
                models['AST'] = OptimizedAST()
            if model_results.get('PANNs', False):
                models['PANNs'] = OptimizedPANNs()
            
            inference_times = {}
            test_audio = self.test_audio['speech_sim']
            
            for name, model in models.items():
                try:
                    # Warm-up run
                    model.predict(test_audio[:1000])
                    
                    # Benchmark runs
                    times = []
                    for _ in range(5):
                        start = time.time()
                        result = model.predict(test_audio)
                        times.append(time.time() - start)
                    
                    avg_time = np.mean(times)
                    inference_times[name] = avg_time
                    
                    # Check if real-time capable
                    is_realtime = avg_time < 4.0  # 4 second audio
                    status = "βœ…" if is_realtime else "⚠️ "
                    
                    print(f"  {status} {name}: {avg_time:.3f}s (RTF: {avg_time/4.0:.3f})")
                    
                except Exception as e:
                    print(f"  ❌ {name} inference failed: {str(e)[:50]}...")
                    inference_times[name] = float('inf')
            
            return inference_times
            
        except Exception as e:
            print(f"❌ Inference testing failed: {e}")
            return {}
    
    def test_memory_usage(self) -> Dict[str, float]:
        """Test memory usage of models"""
        print("\nπŸ’Ύ Testing Memory Usage...")
        
        try:
            import gc
            from app import VADDemo
            
            # Baseline memory
            gc.collect()
            baseline_mb = psutil.virtual_memory().used / 1024 / 1024
            
            # Load demo
            demo = VADDemo()
            gc.collect()
            demo_mb = psutil.virtual_memory().used / 1024 / 1024
            
            memory_usage = {
                'baseline': baseline_mb,
                'with_demo': demo_mb,
                'demo_overhead': demo_mb - baseline_mb
            }
            
            print(f"  πŸ“Š Baseline: {baseline_mb:.0f}MB")
            print(f"  πŸ“Š With Demo: {demo_mb:.0f}MB") 
            print(f"  πŸ“Š Demo Overhead: {memory_usage['demo_overhead']:.0f}MB")
            
            # Check if within HF Spaces limits (16GB)
            if demo_mb < 2000:  # 2GB threshold for safety
                print("  βœ… Memory usage acceptable for HF Spaces")
            else:
                print("  ⚠️  High memory usage - consider optimization")
            
            return memory_usage
            
        except Exception as e:
            print(f"❌ Memory testing failed: {e}")
            return {}
    
    def test_gradio_interface(self) -> bool:
        """Test Gradio interface creation"""
        print("\n🎨 Testing Gradio Interface...")
        
        try:
            from app import create_interface
            
            # Create interface (don't launch)
            interface = create_interface()
            
            if interface is not None:
                print("  βœ… Interface created successfully")
                
                # Check if queue is supported
                try:
                    interface.queue(max_size=5)
                    print("  βœ… Queue support working")
                except:
                    print("  ⚠️  Queue support limited")
                
                return True
            else:
                print("  ❌ Interface creation failed")
                return False
                
        except Exception as e:
            print(f"❌ Interface testing failed: {e}")
            return False
    
    def benchmark_full_pipeline(self) -> Dict[str, float]:
        """Benchmark complete processing pipeline"""
        print("\n🏁 Benchmarking Full Pipeline...")
        
        try:
            from app import VADDemo
            
            demo = VADDemo()
            test_audio = self.test_audio['speech_sim']
            
            # Simulate audio stream format
            audio_input = (16000, test_audio)  # (sample_rate, data)
            
            # Benchmark complete pipeline
            times = []
            for i in range(3):
                start = time.time()
                
                try:
                    result = demo.process_audio_stream(
                        audio_input, 
                        'Silero-VAD', 
                        'E-PANNs', 
                        0.5
                    )
                    
                    end = time.time()
                    times.append(end - start)
                    
                    print(f"  πŸ”„ Run {i+1}: {end-start:.3f}s")
                    
                except Exception as e:
                    print(f"  ❌ Run {i+1} failed: {e}")
                    times.append(float('inf'))
            
            avg_time = np.mean([t for t in times if t != float('inf')])
            
            if avg_time < 1.0:
                print(f"  βœ… Pipeline average: {avg_time:.3f}s (excellent)")
            elif avg_time < 2.0:
                print(f"  βœ… Pipeline average: {avg_time:.3f}s (good)")
            else:
                print(f"  ⚠️  Pipeline average: {avg_time:.3f}s (slow)")
            
            return {'avg_pipeline_time': avg_time, 'all_times': times}
            
        except Exception as e:
            print(f"❌ Pipeline benchmarking failed: {e}")
            return {}

# ===== OPTIMIZATION UTILITIES =====

class VADOptimizer:
    """Optimization utilities for VAD demo"""
    
    def __init__(self):
        pass
    
    def optimize_torch_settings(self):
        """Optimize PyTorch for CPU inference"""
        print("πŸ”§ Optimizing PyTorch Settings...")
        
        try:
            import torch
            
            # Set CPU threads for optimal performance
            cpu_count = psutil.cpu_count(logical=False)
            torch.set_num_threads(min(cpu_count, 4))  # Don't exceed 4 threads
            
            # Disable gradient computation globally
            torch.set_grad_enabled(False)
            
            # Use optimized CPU operations
            if hasattr(torch.backends, 'mkldnn'):
                torch.backends.mkldnn.enabled = True
                print("  βœ… MKL-DNN enabled")
            
            print(f"  βœ… CPU threads set to: {torch.get_num_threads()}")
            print("  βœ… Gradients disabled globally")
            
        except Exception as e:
            print(f"❌ PyTorch optimization failed: {e}")
    
    def create_optimized_requirements(self):
        """Create optimized requirements.txt"""
        print("πŸ“¦ Creating Optimized Requirements...")
        
        optimized_requirements = """# Core dependencies - CPU optimized

gradio>=4.0.0,<5.0.0

numpy>=1.21.0,<1.25.0

torch>=2.0.0,<2.1.0

torchaudio>=2.0.0,<2.1.0



# Audio processing - optimized versions

librosa>=0.10.0,<0.11.0

soundfile>=0.12.1,<0.13.0

scipy>=1.9.0,<1.12.0



# Visualization - stable version

plotly>=5.15.0,<5.17.0



# Machine learning - pinned versions

transformers>=4.30.0,<4.35.0

datasets>=2.12.0,<2.15.0



# Optional dependencies with fallbacks

webrtcvad>=2.0.10; sys_platform != "darwin"

scikit-learn>=1.1.0,<1.4.0



# System utilities

psutil>=5.9.0

matplotlib>=3.5.0,<3.8.0



# Memory optimization

pympler>=0.9; python_version >= "3.8"

"""
        
        try:
            with open('requirements_optimized.txt', 'w') as f:
                f.write(optimized_requirements)
            print("  βœ… Optimized requirements.txt created")
            
            # Also create packages.txt for system dependencies
            system_packages = """ffmpeg

libsndfile1

libasound2-dev

portaudio19-dev

"""
            
            with open('packages_optimized.txt', 'w') as f:
                f.write(system_packages)
            print("  βœ… System packages.txt created")
            
        except Exception as e:
            print(f"❌ Requirements optimization failed: {e}")
    
    def create_deployment_config(self):
        """Create optimized deployment configuration"""
        print("βš™οΈ  Creating Deployment Config...")
        
        # Create .gitattributes for Git LFS
        gitattributes = """*.pkl filter=lfs diff=lfs merge=lfs -text

*.bin filter=lfs diff=lfs merge=lfs -text

*.safetensors filter=lfs diff=lfs merge=lfs -text

*.onnx filter=lfs diff=lfs merge=lfs -text

*.h5 filter=lfs diff=lfs merge=lfs -text

"""
        
        try:
            with open('.gitattributes', 'w') as f:
                f.write(gitattributes)
            print("  βœ… .gitattributes created")
            
            # Create Dockerfile for local testing (optional)
            dockerfile = """FROM python:3.10-slim



WORKDIR /app



# System dependencies

RUN apt-get update && apt-get install -y \\

    ffmpeg \\

    libsndfile1 \\

    && rm -rf /var/lib/apt/lists/*



# Python dependencies

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt



# Copy application

COPY . .



# Expose port

EXPOSE 7860



# Run application

CMD ["python", "app.py"]

"""
            
            with open('Dockerfile', 'w') as f:
                f.write(dockerfile)
            print("  βœ… Dockerfile created for local testing")
            
        except Exception as e:
            print(f"❌ Deployment config failed: {e}")

# ===== MAIN TESTING INTERFACE =====

def run_comprehensive_test():
    """Run all tests and optimizations"""
    print("πŸ§ͺ VAD Demo - Comprehensive Testing Suite")
    print("=" * 50)
    
    tester = VADTester()
    optimizer = VADOptimizer()
    
    # Optimization first
    print("\nπŸ”§ OPTIMIZATION PHASE")
    optimizer.optimize_torch_settings()
    optimizer.create_optimized_requirements()
    optimizer.create_deployment_config()
    
    # Testing phase
    print("\nπŸ§ͺ TESTING PHASE")
    
    # Test 1: Dependencies
    deps_ok = tester.test_dependencies()
    if not deps_ok:
        print("\n❌ Critical: Fix dependencies before proceeding")
        return False
    
    # Test 2: Audio generation
    audio_ok = tester.test_audio_generation()
    if not audio_ok:
        print("\n❌ Critical: Audio processing not working")
        return False
    
    # Test 3: Model loading
    model_results = tester.test_model_loading()
    working_models = sum(model_results.values())
    print(f"\nπŸ“Š Models Working: {working_models}/5")
    
    if working_models == 0:
        print("❌ Critical: No models working")
        return False
    elif working_models < 3:
        print("⚠️  Warning: Limited models available")
    
    # Test 4: Model inference
    inference_results = tester.test_model_inference(model_results)
    realtime_models = sum(1 for t in inference_results.values() if t < 4.0)
    print(f"\nπŸ“Š Real-time Models: {realtime_models}/{len(inference_results)}")
    
    # Test 5: Memory usage
    memory_results = tester.test_memory_usage()
    if memory_results:
        overhead = memory_results.get('demo_overhead', 0)
        if overhead > 1000:  # 1GB
            print("⚠️  Warning: High memory usage")
    
    # Test 6: Interface creation
    interface_ok = tester.test_gradio_interface()
    if not interface_ok:
        print("❌ Critical: Gradio interface not working")
        return False
    
    # Test 7: Full pipeline
    pipeline_results = tester.benchmark_full_pipeline()
    avg_time = pipeline_results.get('avg_pipeline_time', float('inf'))
    
    # Final assessment
    print("\n" + "=" * 50)
    print("πŸ“‹ FINAL ASSESSMENT")
    print("=" * 50)
    
    if deps_ok and audio_ok and interface_ok and working_models >= 2:
        if avg_time < 1.0 and realtime_models >= 2:
            print("πŸŽ‰ EXCELLENT - Ready for WASPAA demo!")
            print("βœ… All systems optimal")
        elif avg_time < 2.0 and realtime_models >= 1:
            print("βœ… GOOD - Demo ready with minor optimizations")
            print("πŸ’‘ Consider further model optimization")
        else:
            print("⚠️  ACCEPTABLE - Demo functional but slow")
            print("πŸ’‘ Consider upgrading to GPU Spaces for presentation")
    else:
        print("❌ NOT READY - Critical issues need fixing")
        return False
    
    # Performance summary
    print(f"\nπŸ“Š Performance Summary:")
    print(f"   β€’ Working Models: {working_models}/5")
    print(f"   β€’ Real-time Models: {realtime_models}")
    print(f"   β€’ Average Pipeline: {avg_time:.3f}s")
    if memory_results:
        print(f"   β€’ Memory Overhead: {memory_results.get('demo_overhead', 0):.0f}MB")
    
    # Recommendations
    print(f"\nπŸ’‘ Recommendations:")
    if working_models < 5:
        print("   β€’ Check model loading errors above")
    if realtime_models < 3:
        print("   β€’ Consider model optimization or GPU upgrade")
    if avg_time > 1.0:
        print("   β€’ Optimize audio processing pipeline")
    
    print("\nπŸš€ Next Steps:")
    print("   1. Fix any critical issues above")
    print("   2. Use optimized files: requirements_optimized.txt")
    print("   3. Deploy to Hugging Face Spaces")
    print("   4. Test live demo URL before WASPAA")
    
    return True

def run_quick_test():
    """Run quick essential tests only"""
    print("⚑ VAD Demo - Quick Test")
    print("=" * 30)
    
    tester = VADTester()
    
    # Essential tests only
    deps_ok = tester.test_dependencies()
    audio_ok = tester.test_audio_generation()
    model_results = tester.test_model_loading()
    
    working_models = sum(model_results.values())
    
    if deps_ok and audio_ok and working_models >= 2:
        print("\nβœ… QUICK TEST PASSED")
        print(f"Ready for deployment with {working_models} models")
        return True
    else:
        print("\n❌ QUICK TEST FAILED")
        print("Run --test-all for detailed diagnosis")
        return False

def main():
    parser = argparse.ArgumentParser(description='VAD Demo Testing & Optimization')
    parser.add_argument('--test-all', action='store_true', 
                       help='Run comprehensive test suite')
    parser.add_argument('--quick-test', action='store_true',
                       help='Run quick essential tests')
    parser.add_argument('--optimize', action='store_true',
                       help='Create optimized configuration files')
    parser.add_argument('--benchmark', action='store_true',
                       help='Run performance benchmarks only')
    
    args = parser.parse_args()
    
    if args.test_all:
        success = run_comprehensive_test()
        sys.exit(0 if success else 1)
    elif args.quick_test:
        success = run_quick_test()
        sys.exit(0 if success else 1)
    elif args.optimize:
        optimizer = VADOptimizer()
        optimizer.optimize_torch_settings()
        optimizer.create_optimized_requirements()
        optimizer.create_deployment_config()
        print("βœ… Optimization complete")
    elif args.benchmark:
        tester = VADTester()
        tester.test_audio_generation()
        model_results = tester.test_model_loading()
        inference_results = tester.test_model_inference(model_results)
        pipeline_results = tester.benchmark_full_pipeline()
        print("πŸ“Š Benchmark complete")
    else:
        print("Usage: python test_and_optimize.py [--test-all|--quick-test|--optimize|--benchmark]")
        print("\nFor WASPAA demo preparation, run:")
        print("  python test_and_optimize.py --test-all")

if __name__ == "__main__":
    main()