File size: 66,031 Bytes
18e8cca
be69583
 
 
 
 
e7a0281
 
 
08ba0e7
 
 
82b2c2f
8131256
be69583
82b2c2f
 
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
82b2c2f
 
 
ee24bdc
82b2c2f
 
 
 
 
 
ee24bdc
82b2c2f
be69583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a0281
 
 
 
 
 
 
 
d7e6fe4
08ba0e7
d7e6fe4
08ba0e7
d7e6fe4
 
08ba0e7
d7e6fe4
 
 
 
 
 
 
 
 
08ba0e7
 
 
 
 
 
 
 
 
9b9394f
d7e6fe4
 
301bbc8
ee24bdc
d7e6fe4
 
 
301bbc8
 
 
d7e6fe4
 
 
 
 
 
 
 
301bbc8
 
d7e6fe4
e7a0281
be69583
 
 
 
 
 
e7a0281
 
 
 
 
 
 
 
be69583
 
 
08ba0e7
be69583
 
ee24bdc
be69583
 
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
e78c137
be69583
ee24bdc
8131256
e7a0281
ee24bdc
be69583
60f0c90
 
ee24bdc
60f0c90
0ea20e3
60f0c90
 
0ea20e3
60f0c90
 
 
0ea20e3
 
 
 
 
60f0c90
 
ee24bdc
60f0c90
ee24bdc
08ba0e7
 
ee24bdc
08ba0e7
 
ee24bdc
08ba0e7
ee24bdc
be69583
60f0c90
e7a0281
be69583
8131256
be69583
08ba0e7
ee24bdc
 
 
be69583
 
a21e04b
bce828d
60f0c90
 
 
 
ee24bdc
e78c137
be69583
ee24bdc
8131256
60f0c90
 
 
 
 
ee24bdc
be69583
60f0c90
 
ee24bdc
0ea20e3
 
 
ee24bdc
bce828d
 
 
 
ee24bdc
60f0c90
 
ee24bdc
bce828d
 
eba11b2
08ba0e7
be69583
 
ee24bdc
08ba0e7
60f0c90
ee24bdc
e7a0281
ee24bdc
be69583
60f0c90
e7a0281
be69583
d7e6fe4
be69583
 
60f0c90
ee24bdc
08ba0e7
ee24bdc
d7e6fe4
 
 
 
 
 
 
 
ee24bdc
e78c137
be69583
ee24bdc
be69583
60f0c90
 
ee24bdc
60f0c90
 
ee24bdc
e78c137
 
 
ee24bdc
aee7b20
 
 
 
ee24bdc
aee7b20
 
 
 
ee24bdc
aee7b20
 
 
 
 
 
ee24bdc
aee7b20
 
 
 
ee24bdc
aee7b20
 
 
d7e6fe4
aee7b20
 
 
 
 
d7e6fe4
aee7b20
ee24bdc
d7e6fe4
 
aee7b20
 
 
 
ee24bdc
8131256
11719c2
ee24bdc
60f0c90
ee24bdc
be69583
b647def
 
 
e7a0281
08ba0e7
d7e6fe4
08ba0e7
 
 
 
d7e6fe4
08ba0e7
 
ee24bdc
08ba0e7
 
 
d7e6fe4
 
 
 
 
 
 
 
ee24bdc
d7e6fe4
 
 
 
60f0c90
 
 
d7e6fe4
08ba0e7
 
 
d7e6fe4
ee24bdc
e78c137
eba11b2
ee24bdc
d7e6fe4
60f0c90
 
 
11719c2
60f0c90
 
 
 
 
ee24bdc
08ba0e7
60f0c90
 
e78c137
 
 
ee24bdc
 
e78c137
bcae560
e78c137
 
 
 
 
 
 
aee7b20
ee24bdc
a3b933f
aee7b20
ee24bdc
d7e6fe4
 
 
 
ee24bdc
d7e6fe4
 
ee24bdc
d7e6fe4
ee24bdc
 
aee7b20
 
ee24bdc
d7e6fe4
 
 
 
 
 
ee24bdc
d7e6fe4
 
 
 
ee24bdc
d7e6fe4
 
 
 
 
d2d5f15
d7e6fe4
 
 
 
 
 
 
 
 
ee24bdc
d7e6fe4
 
 
 
ee24bdc
d7e6fe4
 
 
 
 
 
ee24bdc
d7e6fe4
 
 
ee24bdc
 
d7e6fe4
 
 
 
 
ee24bdc
d7e6fe4
 
 
 
d2d5f15
ee24bdc
08ba0e7
b647def
 
 
60f0c90
 
 
11719c2
60f0c90
 
 
 
 
08ba0e7
e78c137
08ba0e7
 
ee24bdc
08ba0e7
 
 
e78c137
08ba0e7
ee24bdc
08ba0e7
 
 
60f0c90
 
 
 
ee24bdc
96f8e9f
 
 
 
 
dac6057
 
 
 
 
 
ee24bdc
60f0c90
 
 
 
08ba0e7
 
 
ee24bdc
e78c137
eba11b2
ee24bdc
60f0c90
bcae560
60f0c90
ec04aee
bcae560
 
 
 
d2d5f15
bcae560
 
ee24bdc
60f0c90
 
 
 
ee24bdc
08ba0e7
e78c137
ee24bdc
60f0c90
 
ee24bdc
e78c137
 
ee24bdc
aee7b20
ee24bdc
5bbaead
aee7b20
ee24bdc
aee7b20
25b51aa
ee24bdc
 
25b51aa
ee24bdc
 
25b51aa
ee24bdc
96f8e9f
25b51aa
96f8e9f
 
 
ee24bdc
25b51aa
 
 
 
ee24bdc
d2d5f15
25b51aa
 
d2d5f15
 
 
 
 
ee24bdc
25b51aa
 
 
ee24bdc
d2d5f15
 
 
 
 
 
ee24bdc
25b51aa
d2d5f15
 
 
ee24bdc
d2d5f15
 
 
 
 
ee24bdc
25b51aa
d2d5f15
ee24bdc
 
 
96f8e9f
 
 
ee24bdc
5bbaead
ee24bdc
08ba0e7
b647def
 
 
bcae560
60f0c90
ee24bdc
 
 
60f0c90
 
 
 
e7a0281
be69583
08ba0e7
be69583
60f0c90
 
ee24bdc
60f0c90
 
83e6d64
 
 
ee24bdc
96f8e9f
 
ee24bdc
96f8e9f
 
ee24bdc
 
 
 
 
96f8e9f
ee24bdc
206a825
5bbaead
ee24bdc
 
 
 
 
0ea20e3
ee24bdc
0ea20e3
 
 
 
 
 
 
5bbaead
ee24bdc
60f0c90
ee24bdc
 
8131256
60f0c90
 
ee24bdc
be69583
60f0c90
 
e60e716
ee24bdc
 
e60e716
60f0c90
 
ee24bdc
60f0c90
 
ee24bdc
e60e716
 
ee24bdc
8131256
ee24bdc
be69583
60f0c90
be69583
ee24bdc
08ba0e7
83e6d64
 
60f0c90
 
 
 
 
 
ee24bdc
60f0c90
ee24bdc
60f0c90
ee24bdc
60f0c90
 
 
 
 
 
 
ee24bdc
60f0c90
83e6d64
ee24bdc
301bbc8
72628c2
bd1af2c
301bbc8
bd1af2c
ee24bdc
83e6d64
60f0c90
 
 
ee24bdc
60f0c90
 
 
206a825
 
60f0c90
ee24bdc
b3b9f78
 
ee24bdc
60f0c90
ee24bdc
60f0c90
ee24bdc
 
60f0c90
 
ee24bdc
60f0c90
 
 
 
 
 
 
ee24bdc
60f0c90
 
ee24bdc
83e6d64
60f0c90
 
 
 
ee24bdc
e78c137
dac6057
 
206a825
 
e78c137
dac6057
e78c137
 
 
 
dac6057
e78c137
60f0c90
206a825
 
dac6057
 
e78c137
 
dac6057
 
 
 
e78c137
206a825
 
e78c137
206a825
 
 
b3b9f78
 
206a825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e78c137
206a825
dac6057
e78c137
 
 
 
 
dac6057
 
 
 
e78c137
 
 
 
dac6057
e78c137
 
dac6057
ee24bdc
dac6057
 
 
e78c137
 
 
dac6057
 
 
 
 
e7a0281
ee24bdc
60f0c90
 
 
 
ee24bdc
96f8e9f
 
ee24bdc
60f0c90
ad332f8
60f0c90
 
 
ee24bdc
60f0c90
 
 
ee24bdc
60f0c90
ee24bdc
60f0c90
 
ee24bdc
ad332f8
60f0c90
 
ee24bdc
60f0c90
 
 
552b946
ee24bdc
552b946
 
ee24bdc
552b946
 
 
ee24bdc
60f0c90
 
552b946
ec04aee
ee24bdc
0ae4672
 
ee24bdc
60f0c90
 
ee24bdc
60f0c90
 
 
ee24bdc
60f0c90
 
 
ee24bdc
60f0c90
 
 
ee24bdc
60f0c90
ee24bdc
60f0c90
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
60f0c90
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
dac6057
 
 
ee24bdc
60f0c90
2324638
0ea20e3
 
 
2324638
60f0c90
0ea20e3
ee24bdc
60f0c90
0ea20e3
ee24bdc
0ea20e3
2324638
60f0c90
0ea20e3
ee24bdc
0ea20e3
ee24bdc
dac6057
0ea20e3
2324638
dac6057
0ea20e3
 
 
 
 
 
2324638
dac6057
0ea20e3
 
 
 
60f0c90
ee24bdc
60f0c90
 
ee24bdc
60f0c90
0ea20e3
 
 
60f0c90
 
0ea20e3
60f0c90
 
ee24bdc
bd1af2c
 
ee24bdc
 
bd1af2c
5e8e920
 
ee24bdc
5e8e920
bd1af2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
bd1af2c
5e8e920
 
ee24bdc
5e8e920
bd1af2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
0ea20e3
 
ee24bdc
60f0c90
206a825
60f0c90
 
 
 
 
 
 
ee24bdc
206a825
60f0c90
 
 
 
 
 
 
ee24bdc
60f0c90
206a825
60f0c90
 
 
 
 
 
 
ee24bdc
206a825
60f0c90
 
 
 
 
 
 
ee24bdc
60f0c90
ee24bdc
552b946
60f0c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee24bdc
60f0c90
ee24bdc
60f0c90
 
 
 
 
 
ee24bdc
60f0c90
 
 
 
 
 
 
 
 
 
 
ee24bdc
60f0c90
ee24bdc
60f0c90
 
 
 
 
 
 
 
8131256
be69583
 
9b9394f
ee24bdc
b647def
 
ee24bdc
 
 
 
 
 
b647def
 
ee24bdc
b647def
ee24bdc
 
08ba0e7
be69583
60f0c90
 
 
 
 
be69583
ee24bdc
9b9394f
60f0c90
ee24bdc
b647def
 
 
 
ee24bdc
b647def
ee24bdc
b647def
ee24bdc
e7a0281
60f0c90
 
ee24bdc
a21e04b
be69583
ee24bdc
60f0c90
 
b647def
 
 
 
 
 
ee24bdc
eba11b2
a3b933f
e78c137
96f8e9f
 
 
 
ee24bdc
 
e78c137
 
ee24bdc
b647def
ee24bdc
 
 
 
b647def
ee24bdc
e78c137
aee7b20
e78c137
ee24bdc
b3b9f78
 
 
 
 
ee24bdc
b3b9f78
 
 
ee24bdc
b3b9f78
 
bd1af2c
ee24bdc
 
b3b9f78
 
 
ee24bdc
 
 
 
e78c137
 
ee24bdc
 
 
 
aee7b20
 
 
 
 
ee24bdc
b3b9f78
 
 
ee24bdc
 
 
b647def
 
 
 
ee24bdc
 
 
 
b647def
ee24bdc
 
 
 
 
 
 
 
 
ad332f8
ee24bdc
 
206a825
 
ee24bdc
dac6057
 
206a825
dac6057
ee24bdc
b647def
ee24bdc
60f0c90
ee24bdc
60f0c90
 
ee24bdc
60f0c90
96f8e9f
ee24bdc
60f0c90
96f8e9f
60f0c90
b647def
ee24bdc
e78c137
60f0c90
 
0ea20e3
 
ee24bdc
0ea20e3
60f0c90
 
ee24bdc
60f0c90
 
ee24bdc
dac6057
 
ee24bdc
60f0c90
 
ee24bdc
 
60f0c90
ee24bdc
 
60f0c90
ec04aee
ee24bdc
ec04aee
0ea20e3
 
ee24bdc
b647def
 
60f0c90
ee24bdc
e7a0281
ee24bdc
be69583
60f0c90
c82e303
a21e04b
b647def
 
60f0c90
 
82b2c2f
 
ee24bdc
82b2c2f
 
 
 
ee24bdc
82b2c2f
 
 
ee24bdc
82b2c2f
 
ee24bdc
82b2c2f
 
 
 
 
ee24bdc
82b2c2f
ee24bdc
ec04aee
ee24bdc
ec04aee
60f0c90
ec04aee
 
9b9394f
ec04aee
60f0c90
ee24bdc
ec04aee
60f0c90
82b2c2f
ee24bdc
ec04aee
 
4788ddc
ec04aee
ee24bdc
ec04aee
 
 
 
 
ee24bdc
60f0c90
 
4fd21cb
60f0c90
 
ee24bdc
60f0c90
 
ee24bdc
60f0c90
 
ee24bdc
60f0c90
 
 
 
 
dac6057
60f0c90
ee24bdc
ec04aee
ee24bdc
4788ddc
ec04aee
 
3fa4618
4788ddc
 
60f0c90
ee24bdc
ec04aee
 
ee24bdc
60f0c90
ec04aee
ee24bdc
60f0c90
 
ee24bdc
ec04aee
60f0c90
 
ee24bdc
60f0c90
 
 
 
 
 
ee24bdc
ec04aee
60f0c90
 
ec04aee
ee24bdc
206a825
60f0c90
ee24bdc
60f0c90
5bbaead
 
60f0c90
 
 
ad332f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
import gradio as gr
import numpy as np
import torch
import time
import warnings
from dataclasses import dataclass
from typing import List, Tuple, Dict
import threading
import queue
import os
import requests
from pathlib import Path
import base64
# Suppress warnings
warnings.filterwarnings('ignore')
# Function to convert image to base64
def image_to_base64(image_path):
    try:
        with open(image_path, "rb") as img_file:
            return base64.b64encode(img_file.read()).decode('utf-8')
    except Exception as e:
        print(f"Error loading image {image_path}: {e}")
        return None
# Load logos as base64
def load_logos():
    logos = {}
    logo_files = {
        'ai4s': 'ai4s_banner.png',
        'surrey': 'surrey_logo.png',
        'epsrc': 'EPSRC_logo.png',
        'cvssp': 'CVSSP_logo.png'
    }
   
    for key, filename in logo_files.items():
        if os.path.exists(filename):
            logos[key] = image_to_base64(filename)
        else:
            print(f"Logo file {filename} not found")
            logos[key] = None
   
    return logos
# Optional imports with fallbacks
try:
    import librosa
    LIBROSA_AVAILABLE = True
    print("βœ… Librosa available")
except ImportError:
    LIBROSA_AVAILABLE = False
    print("⚠️ Librosa not available, using scipy fallback")
try:
    import webrtcvad
    WEBRTC_AVAILABLE = True
    print("βœ… WebRTC VAD available")
except ImportError:
    WEBRTC_AVAILABLE = False
    print("⚠️ WebRTC VAD not available, using fallback")
try:
    import plotly.graph_objects as go
    from plotly.subplots import make_subplots
    PLOTLY_AVAILABLE = True
    print("βœ… Plotly available")
except ImportError:
    PLOTLY_AVAILABLE = False
    print("⚠️ Plotly not available")
# PANNs imports - UPDATED to include SoundEventDetection
try:
    from panns_inference import AudioTagging, SoundEventDetection, labels
    PANNS_AVAILABLE = True
    PANNS_SED_AVAILABLE = True
    print("βœ… PANNs available with SoundEventDetection")
except ImportError:
    try:
        from panns_inference import AudioTagging, labels
        PANNS_AVAILABLE = True
        PANNS_SED_AVAILABLE = False
        print("βœ… PANNs available (AudioTagging only)")
    except ImportError:
        PANNS_AVAILABLE = False
        PANNS_SED_AVAILABLE = False
        print("⚠️ PANNs not available, using fallback")
# Transformers for AST
try:
    from transformers import ASTForAudioClassification, ASTFeatureExtractor
    import transformers
    AST_AVAILABLE = True
    print("βœ… AST (Transformers) available")
except ImportError:
    AST_AVAILABLE = False
    print("⚠️ AST not available, using fallback")
print("πŸš€ Creating VAD Demo...")
# ===== HELPER FUNCTIONS FOR CORRECTED MODELS =====
def safe_resample(x, sr_in, sr_out):
    """Safely resample audio from sr_in to sr_out with improved error handling"""
    if sr_in == sr_out:
        return x.astype(np.float32)
    try:
        if LIBROSA_AVAILABLE:
            # Use librosa with error handling
            result = librosa.resample(x.astype(float), orig_sr=sr_in, target_sr=sr_out)
            return result.astype(np.float32)
        else:
            # Fallback linear interpolation
            dur = len(x) / sr_in
            n_out = max(1, int(round(dur * sr_out)))
            xi = np.linspace(0, len(x)-1, num=len(x))
            xo = np.linspace(0, len(x)-1, num=n_out)
            return np.interp(xo, xi, x).astype(np.float32)
    except Exception as e:
        print(f"⚠️ Resample error ({sr_in}β†’{sr_out}Hz): {e}")
        # Return input as fallback
        return x.astype(np.float32)
# ===== DATA STRUCTURES =====
@dataclass
class VADResult:
    probability: float
    is_speech: bool
    model_name: str
    processing_time: float
    timestamp: float
@dataclass
class OnsetOffset:
    onset_time: float
    offset_time: float
    model_name: str
    confidence: float
# ===== MODEL IMPLEMENTATIONS =====
class OptimizedSileroVAD:
    def __init__(self):
        self.model = None
        self.sample_rate = 16000
        self.model_name = "Silero-VAD"
        self.load_model()
   
    def load_model(self):
        try:
            self.model, _ = torch.hub.load(
                repo_or_dir='snakers4/silero-vad',
                model='silero_vad',
                force_reload=False,
                onnx=False
            )
            self.model.eval()
            print(f"βœ… {self.model_name} loaded successfully")
        except Exception as e:
            print(f"❌ Error loading {self.model_name}: {e}")
            self.model = None
   
    def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
        start_time = time.time()
       
        if self.model is None or len(audio) == 0:
            return VADResult(0.0, False, f"{self.model_name} (unavailable)", time.time() - start_time, timestamp)
       
        try:
            if len(audio.shape) > 1:
                audio = audio.mean(axis=1)
           
            required_samples = 512
            # Silero requires exactly 512 samples, handle this precisely
            if len(audio) != required_samples:
                if len(audio) > required_samples:
                    # Take center portion to avoid edge effects
                    start_idx = (len(audio) - required_samples) // 2
                    audio_chunk = audio[start_idx:start_idx + required_samples]
                else:
                    # Pad symmetrically instead of just at the end
                    pad_total = required_samples - len(audio)
                    pad_left = pad_total // 2
                    pad_right = pad_total - pad_left
                    audio_chunk = np.pad(audio, (pad_left, pad_right), 'reflect')
            else:
                audio_chunk = audio
           
            audio_tensor = torch.FloatTensor(audio_chunk).unsqueeze(0)
           
            with torch.no_grad():
                speech_prob = self.model(audio_tensor, self.sample_rate).item()
           
            is_speech = speech_prob > 0.5
            processing_time = time.time() - start_time
           
            return VADResult(speech_prob, is_speech, self.model_name, processing_time, timestamp)
           
        except Exception as e:
            print(f"Error in {self.model_name}: {e}")
            return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
class OptimizedWebRTCVAD:
    def __init__(self):
        self.model_name = "WebRTC-VAD"
        self.sample_rate = 16000
        self.frame_duration = 30 # Only 10, 20, or 30 ms are supported
        self.frame_size = int(self.sample_rate * self.frame_duration / 1000) # 480 samples for 30ms
       
        if WEBRTC_AVAILABLE:
            try:
                self.vad = webrtcvad.Vad(3)
                print(f"βœ… {self.model_name} loaded successfully (frame size: {self.frame_size} samples)")
            except:
                self.vad = None
        else:
            self.vad = None
   
    def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
        start_time = time.time()
       
        if self.vad is None or len(audio) == 0:
            energy = np.sum(audio ** 2) if len(audio) > 0 else 0
            threshold = 0.01
            probability = min(energy / threshold, 1.0)
            is_speech = energy > threshold
            return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
       
        try:
            if len(audio.shape) > 1:
                audio = audio.mean(axis=1)
           
            # Properly convert to int16 with clipping to avoid saturation
            audio_clipped = np.clip(audio, -1.0, 1.0)
            audio_int16 = (audio_clipped * 32767).astype(np.int16)
           
            # Ensure we have enough samples for at least one frame
            if len(audio_int16) < self.frame_size:
                # Pad to frame size
                audio_int16 = np.pad(audio_int16, (0, self.frame_size - len(audio_int16)), 'constant')
           
            speech_frames = 0
            total_frames = 0
           
            # Process exact frame sizes only
            for i in range(0, len(audio_int16) - self.frame_size + 1, self.frame_size):
                frame = audio_int16[i:i + self.frame_size].tobytes()
                if self.vad.is_speech(frame, self.sample_rate):
                    speech_frames += 1
                total_frames += 1
           
            probability = speech_frames / max(total_frames, 1)
            is_speech = probability > 0.3
           
            return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
           
        except Exception as e:
            print(f"Error in {self.model_name}: {e}")
            return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
class OptimizedEPANNs:
    """CORRECTED E-PANNs with proper temporal resolution using sliding windows"""
    def __init__(self):
        self.model_name = "E-PANNs"
        self.sample_rate = 32000
        self.win_s = 1.0 # CHANGED from 6.0 to 1.0 for better temporal resolution
        print(f"βœ… {self.model_name} initialized")
       
        # Try to load PANNs AudioTagging as backend for E-PANNs
        self.at_model = None
        if PANNS_AVAILABLE:
            try:
                self.at_model = AudioTagging(checkpoint_path=None, device='cpu')
                print(f"βœ… {self.model_name} using PANNs AT backend")
            except Exception as e:
                print(f"⚠️ {self.model_name} PANNs AT unavailable: {e}")
   
    def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
        start_time = time.time()
       
        try:
            if len(audio) == 0:
                return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
           
            if len(audio.shape) > 1:
                audio = audio.mean(axis=1)
           
            # CORRECTED: Work with the chunk directly, no more extracting windows
            # The audio passed is already the chunk for this timestamp
            x = safe_resample(audio, 16000, self.sample_rate)
           
            # Pad to minimum window size if needed (no repeating)
            min_samples = int(self.sample_rate * self.win_s)
            if len(x) < min_samples:
                x = np.pad(x, (0, min_samples - len(x)), mode='constant')
           
            # If we have PANNs AT model, use it
            if self.at_model is not None:
                # Run inference
                clipwise_output, _ = self.at_model.inference(x[np.newaxis, :])
               
                # Get speech-related classes
                speech_keywords = [
                    'speech', 'voice', 'talk', 'conversation', 'speaking',
                    'male speech', 'female speech', 'child speech',
                    'narration', 'monologue', 'speech synthesizer'
                ]
               
                speech_indices = []
                for i, lbl in enumerate(labels):
                    if any(word in lbl.lower() for word in speech_keywords):
                        speech_indices.append(i)
               
                if speech_indices:
                    speech_probs = clipwise_output[0, speech_indices]
                    speech_score = float(np.max(speech_probs))
                else:
                    speech_score = float(np.max(clipwise_output[0]))
            else:
                # Fallback to spectral features
                if LIBROSA_AVAILABLE:
                    mel_spec = librosa.feature.melspectrogram(y=x, sr=self.sample_rate, n_mels=64)
                    energy = np.mean(librosa.power_to_db(mel_spec, ref=np.max))
                    spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=x, sr=self.sample_rate))
                   
                    energy_score = np.clip((energy + 80) / 40, 0, 1)
                    centroid_score = np.clip((spectral_centroid - 200) / 3000, 0, 1)
                    speech_score = energy_score * 0.7 + centroid_score * 0.3
                else:
                    energy = np.sum(x ** 2) / len(x)
                    speech_score = min(energy * 50, 1.0)
           
            probability = np.clip(speech_score, 0, 1)
            is_speech = probability > 0.4
           
            return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
           
        except Exception as e:
            print(f"❌ E-PANNs ERROR: {e}")
            import traceback
            traceback.print_exc()
            return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
class OptimizedPANNs:
    """CORRECTED PANNs with SoundEventDetection for framewise output when available"""
    def __init__(self):
        self.model_name = "PANNs"
        self.sample_rate = 32000
        self.model = None
        self.sed_model = None
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.load_model()
   
    def load_model(self):
        try:
            if PANNS_AVAILABLE:
                # Try to load SED model first for framewise output
                if PANNS_SED_AVAILABLE:
                    try:
                        self.sed_model = SoundEventDetection(checkpoint_path=None, device=self.device)
                        print(f"βœ… {self.model_name} SED loaded successfully (framewise mode)")
                    except Exception as e:
                        print(f"⚠️ {self.model_name} SED initialization failed: {e}")
                        self.sed_model = None
               
                # Load AudioTagging as fallback or primary
                if self.sed_model is None:
                    self.model = AudioTagging(checkpoint_path=None, device=self.device)
                    print(f"βœ… {self.model_name} AT loaded successfully")
            else:
                print(f"⚠️ {self.model_name} not available, using fallback")
                self.model = None
                self.sed_model = None
        except Exception as e:
            print(f"❌ Error loading {self.model_name}: {e}")
            self.model = None
            self.sed_model = None
   
    def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
        start_time = time.time()
       
        if (self.model is None and self.sed_model is None) or len(audio) == 0:
            if len(audio) > 0:
                energy = np.sum(audio ** 2)
                threshold = 0.01
                probability = min(energy / (threshold * 100), 1.0)
                is_speech = energy > threshold
            else:
                probability = 0.0
                is_speech = False
            return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
       
        try:
            if len(audio.shape) > 1:
                audio = audio.mean(axis=1)
            # CORRECTED: Work with the chunk directly
            # Convert audio to PANNs sample rate
            if LIBROSA_AVAILABLE:
                audio_resampled = librosa.resample(audio.astype(float),
                                                 orig_sr=16000,
                                                 target_sr=self.sample_rate)
            else:
                # Simple resampling fallback
                resample_factor = self.sample_rate / 16000
                audio_resampled = np.interp(
                    np.linspace(0, len(audio) - 1, int(len(audio) * resample_factor)),
                    np.arange(len(audio)),
                    audio
                )
            # For short audio, pad (no repeating)
            min_samples = 1 * self.sample_rate # 1 second minimum
            if len(audio_resampled) < min_samples:
                audio_resampled = np.pad(audio_resampled, (0, min_samples - len(audio_resampled)), mode='constant')
           
            # Use SED for framewise predictions if available
            if self.sed_model is not None:
                # SED gives framewise output
                framewise_output = self.sed_model.inference(audio_resampled[np.newaxis, :])
               
                if hasattr(framewise_output, 'cpu'):
                    framewise_output = framewise_output.cpu().numpy()
               
                if framewise_output.ndim == 3:
                    framewise_output = framewise_output[0] # Remove batch dimension
               
                # Get middle frame (corresponding to center of window)
                frame_idx = framewise_output.shape[0] // 2
               
                # Get speech-related classes
                speech_keywords = [
                    'speech', 'voice', 'talk', 'conversation', 'speaking',
                    'male speech', 'female speech', 'child speech',
                    'narration', 'monologue'
                ]
               
                speech_indices = []
                for i, lbl in enumerate(labels):
                    if any(word in lbl.lower() for word in speech_keywords):
                        speech_indices.append(i)
               
                if speech_indices and frame_idx < framewise_output.shape[0]:
                    speech_probs = framewise_output[frame_idx, speech_indices]
                    speech_prob = float(np.max(speech_probs))
                else:
                    speech_prob = float(np.max(framewise_output[frame_idx])) if frame_idx < framewise_output.shape[0] else 0.0
            else:
                # Use AudioTagging model
                # Run inference
                clip_probs, _ = self.model.inference(audio_resampled[np.newaxis, :])
                # Enhanced speech detection using multiple relevant labels
                speech_keywords = [
                    'speech', 'voice', 'talk', 'conversation', 'speaking',
                    'male speech', 'female speech', 'child speech',
                    'narration', 'monologue'
                ]
               
                speech_indices = []
                for i, lbl in enumerate(labels):
                    if any(word in lbl.lower() for word in speech_keywords):
                        speech_indices.append(i)
               
                # Also get silence/noise indices for contrast
                noise_keywords = ['silence', 'white noise', 'pink noise']
                noise_indices = []
                for i, lbl in enumerate(labels):
                    if any(word in lbl.lower() for word in noise_keywords):
                        noise_indices.append(i)
               
                if speech_indices:
                    # Get speech probability
                    speech_probs = clip_probs[0, speech_indices]
                    speech_prob = np.max(speech_probs) # Use max instead of mean for better detection
                   
                    # Get noise probability for contrast
                    if noise_indices:
                        noise_prob = np.mean(clip_probs[0, noise_indices])
                        # Adjust speech probability based on noise
                        speech_prob = speech_prob * (1 - noise_prob * 0.5)
                       
                else:
                    # Fallback if no speech indices found
                    top_indices = np.argsort(clip_probs[0])[-10:]
                    speech_prob = np.mean(clip_probs[0, top_indices])
            return VADResult(float(speech_prob), speech_prob > 0.4, self.model_name, time.time()-start_time, timestamp)
           
        except Exception as e:
            print(f"❌ PANNs ERROR: {e}")
            import traceback
            traceback.print_exc()
            if len(audio) > 0:
                energy = np.sum(audio ** 2)
                threshold = 0.01
                probability = min(energy / (threshold * 100), 1.0)
                is_speech = energy > threshold
            else:
                probability = 0.0
                is_speech = False
            return VADResult(probability, is_speech, f"{self.model_name} (error)", time.time() - start_time, timestamp)
class OptimizedAST:
    """CORRECTED AST with proper 16kHz sample rate and NO CACHE"""
    def __init__(self):
        self.model_name = "AST"
        self.sample_rate = 16000 # AST REQUIRES 16kHz
        self.model = None
        self.feature_extractor = None
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # NO CACHE - removed cache_window and prediction_cache
        self.load_model()
   
    def load_model(self):
        try:
            if AST_AVAILABLE:
                model_name = "MIT/ast-finetuned-audioset-10-10-0.4593"
                self.feature_extractor = ASTFeatureExtractor.from_pretrained(model_name)
                self.model = ASTForAudioClassification.from_pretrained(model_name)
                self.model.to(self.device)
               
                # Use FP16 for faster inference on GPU
                if self.device.type == 'cuda':
                    self.model = self.model.half()
                    print(f"βœ… {self.model_name} loaded with FP16 optimization")
                else:
                    # Apply quantization for CPU acceleration
                    import torch.nn as nn
                    self.model = torch.quantization.quantize_dynamic(
                        self.model, {nn.Linear}, dtype=torch.qint8
                    )
                    print(f"βœ… {self.model_name} loaded with CPU quantization")
                   
                self.model.eval()
            else:
                print(f"⚠️ {self.model_name} not available, using fallback")
                self.model = None
        except Exception as e:
            print(f"❌ Error loading {self.model_name}: {e}")
            self.model = None
   
    def predict(self, audio: np.ndarray, timestamp: float = 0.0, full_audio: np.ndarray = None) -> VADResult:
        start_time = time.time()
       
        if self.model is None or len(audio) == 0:
            # Enhanced fallback using spectral features
            if len(audio) > 0:
                energy = np.sum(audio ** 2)
                if LIBROSA_AVAILABLE:
                    spectral_features = librosa.feature.spectral_rolloff(y=audio, sr=self.sample_rate)
                    spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio, sr=self.sample_rate))
                    # Combine multiple features for better speech detection
                    probability = min((energy * 100 + spectral_centroid / 1000) / 2, 1.0)
                else:
                    probability = min(energy * 50, 1.0)
                is_speech = probability > 0.25 # Use AST threshold
            else:
                probability = 0.0
                is_speech = False
            return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
       
        try:
            # NO CACHE - removed all cache-related code
           
            if len(audio.shape) > 1:
                audio = audio.mean(axis=1)
           
            # CRITICAL: AST uses 16kHz, input is already at 16kHz
            audio_for_ast = audio.astype(np.float32)
           
            # Pad to minimum 1 second if needed
            min_samples = int(1.0 * self.sample_rate) # 1 second minimum
            if len(audio_for_ast) < min_samples:
                audio_for_ast = np.pad(audio_for_ast, (0, min_samples - len(audio_for_ast)), mode='constant')
           
            # Feature extraction with NO PADDING to 1024
            inputs = self.feature_extractor(
                audio_for_ast,
                sampling_rate=self.sample_rate, # Must be 16kHz
                return_tensors="pt",
                padding=False, # CHANGED: No padding to 1024
                truncation=False # CHANGED: No truncation
            )
           
            # Move inputs to correct device and dtype
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            if self.device.type == 'cuda' and hasattr(self.model, 'half'):
                # Convert inputs to FP16 if model is in FP16
                inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
           
            with torch.no_grad():
                outputs = self.model(**inputs)
                logits = outputs.logits
                probs = torch.sigmoid(logits)
           
            # Find speech-related classes with enhanced keywords
            label2id = self.model.config.label2id
            speech_indices = []
            speech_keywords = [
                'speech', 'voice', 'talk', 'conversation', 'speaking',
                'male speech', 'female speech', 'child speech',
                'speech synthesizer', 'narration'
            ]
           
            for lbl, idx in label2id.items():
                if any(word in lbl.lower() for word in speech_keywords):
                    speech_indices.append(idx)
           
            # Also identify background/noise classes for better discrimination
            noise_keywords = ['silence', 'white noise', 'background']
            noise_indices = []
            for lbl, idx in label2id.items():
                if any(word in lbl.lower() for word in noise_keywords):
                    noise_indices.append(idx)
           
            if speech_indices:
                # Use max probability among speech classes for better detection
                speech_probs = probs[0, speech_indices]
                speech_prob = torch.max(speech_probs).item()
               
                # Consider noise/silence probability
                if noise_indices:
                    noise_prob = torch.mean(probs[0, noise_indices]).item()
                    # Reduce speech probability if high noise/silence detected
                    speech_prob = speech_prob * (1 - noise_prob * 0.3)
                   
            else:
                # Fallback to energy-based detection with better calibration
                energy = np.sum(audio_for_ast ** 2) / len(audio_for_ast) # Normalize by length
                speech_prob = min(energy * 20, 1.0) # Better scaling
           
            # Use lower threshold specifically for AST (0.25 instead of 0.4)
            is_speech_ast = speech_prob > 0.25
            result = VADResult(float(speech_prob), is_speech_ast, self.model_name, time.time()-start_time, timestamp)
           
            return result
           
        except Exception as e:
            print(f"❌ AST ERROR: {e}")
            import traceback
            traceback.print_exc()
            # Enhanced fallback
            if len(audio) > 0:
                energy = np.sum(audio ** 2) / len(audio) # Normalize by length
                probability = min(energy * 100, 1.0) # More conservative scaling
                is_speech = energy > 0.001 # Lower threshold for fallback
            else:
                probability = 0.0
                is_speech = False
            return VADResult(probability, is_speech, f"{self.model_name} (error)", time.time() - start_time, timestamp)
# ===== AUDIO PROCESSOR =====
class AudioProcessor:
    def __init__(self, sample_rate=16000):
        self.sample_rate = sample_rate
        self.chunk_duration = 4.0
        self.chunk_size = int(sample_rate * self.chunk_duration)
       
        self.n_fft = 2048
        self.hop_length = 256
        self.n_mels = 128
        self.fmin = 20
        self.fmax = 8000
       
        self.base_window = 0.064
        self.base_hop = 0.032
       
        # Model-specific window sizes (each model gets appropriate context)
        self.model_windows = {
            "Silero-VAD": 0.032, # 32ms exactly as required (512 samples)
            "WebRTC-VAD": 0.03, # 30ms frames (480 samples)
            "E-PANNs": 1.0, # CHANGED from 6.0 to 1.0 for better temporal resolution
            "PANNs": 1.0, # CHANGED from 10.0 to 1.0 for better temporal resolution
            "AST": 0.96 # OPTIMIZED: Natural window size for AST
        }
       
        # Model-specific hop sizes for efficiency - OPTIMIZED for performance
        self.model_hop_sizes = {
            "Silero-VAD": 0.016, # 16ms hop for Silero (512 samples window)
            "WebRTC-VAD": 0.03, # 30ms hop for WebRTC (match frame duration)
            "E-PANNs": 0.05, # CHANGED from 0.1 to 0.05 for 20Hz
            "PANNs": 0.05, # CHANGED from 0.1 to 0.05 for 20Hz
            "AST": 0.1 # IMPROVED: Better resolution (10 Hz) while maintaining performance
        }
       
        # Model-specific thresholds for better detection
        self.model_thresholds = {
            "Silero-VAD": 0.5,
            "WebRTC-VAD": 0.5,
            "E-PANNs": 0.4,
            "PANNs": 0.4,
            "AST": 0.25
        }
       
        self.delay_compensation = 0.0
        self.correlation_threshold = 0.5 # REDUCED: More sensitive delay detection
       
    def process_audio(self, audio):
        if audio is None:
            return np.array([])
       
        try:
            if isinstance(audio, tuple):
                sample_rate, audio_data = audio
                if sample_rate != self.sample_rate and LIBROSA_AVAILABLE:
                    audio_data = librosa.resample(audio_data.astype(float),
                                                orig_sr=sample_rate,
                                                target_sr=self.sample_rate)
            else:
                audio_data = audio
           
            if len(audio_data.shape) > 1:
                audio_data = audio_data.mean(axis=1)
           
            if np.max(np.abs(audio_data)) > 0:
                audio_data = audio_data / np.max(np.abs(audio_data))
           
            return audio_data
           
        except Exception as e:
            print(f"Audio processing error: {e}")
            return np.array([])
   
    def compute_high_res_spectrogram(self, audio_data):
        try:
            if LIBROSA_AVAILABLE and len(audio_data) > 0:
                stft = librosa.stft(
                    audio_data,
                    n_fft=self.n_fft,
                    hop_length=self.hop_length,
                    win_length=self.n_fft,
                    window='hann',
                    center=True # CAMBIO: True para mejor alineaciΓ³n en bordes
                )
               
                power_spec = np.abs(stft) ** 2
               
                mel_basis = librosa.filters.mel(
                    sr=self.sample_rate,
                    n_fft=self.n_fft,
                    n_mels=self.n_mels,
                    fmin=self.fmin,
                    fmax=self.fmax
                )
               
                mel_spec = np.dot(mel_basis, power_spec)
                mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
               
                # CORRECTED: Use frames_to_time with only valid parameters
                frames = np.arange(mel_spec_db.shape[1])
                time_frames = librosa.frames_to_time(
                    frames, sr=self.sample_rate, hop_length=self.hop_length
                )
               
                return mel_spec_db, time_frames
            else:
                from scipy import signal
                f, t, Sxx = signal.spectrogram(
                    audio_data,
                    self.sample_rate,
                    nperseg=self.n_fft,
                    noverlap=self.n_fft - self.hop_length,
                    window='hann',
                    mode='psd'
                )
               
                # Ajustar tiempos para alinear con center=False (empezar en 0)
                t -= (self.n_fft / 2.0) / self.sample_rate
               
                mel_spec_db = np.zeros((self.n_mels, Sxx.shape[1]))
               
                mel_freqs = np.logspace(
                    np.log10(self.fmin),
                    np.log10(min(self.fmax, self.sample_rate/2)),
                    self.n_mels + 1
                )
               
                for i in range(self.n_mels):
                    f_start = mel_freqs[i]
                    f_end = mel_freqs[i + 1]
                    bin_start = int(f_start * len(f) / (self.sample_rate/2))
                    bin_end = int(f_end * len(f) / (self.sample_rate/2))
                    if bin_end > bin_start:
                        mel_spec_db[i, :] = np.mean(Sxx[bin_start:bin_end, :], axis=0)
               
                mel_spec_db = 10 * np.log10(mel_spec_db + 1e-10)
                return mel_spec_db, t
               
        except Exception as e:
            print(f"Spectrogram computation error: {e}")
            dummy_spec = np.zeros((self.n_mels, 200))
            dummy_time = np.linspace(0, len(audio_data) / self.sample_rate, 200)
            return dummy_spec, dummy_time
   
    def detect_onset_offset_advanced(self, vad_results: List[VADResult],

                                     threshold: float,

                                     apply_delay: float = 0.0,

                                     min_duration: float = 0.12,

                                     total_duration: float = None) -> List[OnsetOffset]:
        """

        Cruces exactos de umbral global, con compensaciΓ³n de delay y filtro de duraciΓ³n mΓ­nima.

        Onset: p[i-1] < thr y p[i] >= thr

        Offset: p[i-1] >= thr y p[i] < thr

        El instante se obtiene por interpolaciΓ³n lineal entre (t[i-1], p[i-1]) y (t[i], p[i]).

        """
        onsets_offsets = []
        if len(vad_results) < 2:
            return onsets_offsets
        if total_duration is None:
            total_duration = max([r.timestamp for r in vad_results]) + 0.01 if vad_results else 0.0
        # agrupar por modelo
        grouped = {}
        for r in vad_results:
            base = r.model_name.split('(')[0].strip()
            # aplica delay al guardar
            grouped.setdefault(base, []).append(
                VADResult(r.probability, r.is_speech, base, r.processing_time, r.timestamp - apply_delay)
            )
        for base, rs in grouped.items():
            if not rs:
                continue
            rs.sort(key=lambda r: r.timestamp)
            # Add virtual start point if first timestamp > 0
            if rs[0].timestamp > 0:
                virtual_start = VADResult(
                    probability=rs[0].probability,
                    is_speech=rs[0].probability > threshold,
                    model_name=base,
                    processing_time=0,
                    timestamp=0.0
                )
                rs.insert(0, virtual_start)
            # Add virtual end point if last timestamp < total_duration
            if rs[-1].timestamp < total_duration - 1e-4:
                virtual_end = VADResult(
                    probability=rs[-1].probability,
                    is_speech=rs[-1].probability > threshold,
                    model_name=base,
                    processing_time=0,
                    timestamp=total_duration
                )
                rs.append(virtual_end)
            t = np.array([r.timestamp for r in rs], dtype=float)
            p = np.array([r.probability for r in rs], dtype=float)
            thr = float(threshold)
            in_seg = False
            onset_t = None
            if p[0] > thr:
                in_seg = True
                onset_t = t[0]
            def xcross(t0, p0, t1, p1, thr):
                if p1 == p0: return t1
                alpha = (thr - p0) / (p1 - p0)
                return t0 + alpha * (t1 - t0)
            for i in range(1, len(p)):
                p0, p1 = p[i-1], p[i]
                t0, t1 = t[i-1], t[i]
                if (not in_seg) and (p0 < thr) and (p1 >= thr):
                    onset_t = xcross(t0, p0, t1, p1, thr)
                    in_seg = True
                elif in_seg and (p0 >= thr) and (p1 < thr):
                    off = xcross(t0, p0, t1, p1, thr)
                    if off - onset_t >= min_duration: # debounce
                        mask = (t >= onset_t) & (t <= off)
                        conf = float(p[mask].mean()) if np.any(mask) else float(max(p0, p1))
                        onsets_offsets.append(OnsetOffset(max(0.0, float(onset_t)), float(off), base, conf))
                    in_seg = False
                    onset_t = None
            if in_seg and onset_t is not None:
                off = float(t[-1])
                if off - onset_t >= min_duration:
                    mask = (t >= onset_t)
                    conf = float(p[mask].mean()) if np.any(mask) else float(p[-1])
                    onsets_offsets.append(OnsetOffset(max(0.0, float(onset_t)), off, base, conf))
        return onsets_offsets
   
    def estimate_delay_compensation(self, audio_data, vad_results):
        try:
            if len(audio_data) == 0 or len(vad_results) == 0:
                return 0.0
           
            window_size = int(self.sample_rate * self.base_window)
            hop_size = int(self.sample_rate * self.base_hop)
           
            energy_signal = []
            for i in range(0, len(audio_data) - window_size + 1, hop_size):
                window = audio_data[i:i + window_size]
                energy = np.sum(window ** 2)
                energy_signal.append(energy)
           
            energy_signal = np.array(energy_signal)
            if len(energy_signal) == 0:
                return 0.0
           
            energy_signal = (energy_signal - np.mean(energy_signal)) / (np.std(energy_signal) + 1e-8)
           
            vad_times = np.array([r.timestamp for r in vad_results])
            vad_probs = np.array([r.probability for r in vad_results])
           
            energy_times = np.arange(len(energy_signal)) * self.base_hop + self.base_window / 2
            vad_interp = np.interp(energy_times, vad_times, vad_probs)
            vad_interp = (vad_interp - np.mean(vad_interp)) / (np.std(vad_interp) + 1e-8)
           
            if len(energy_signal) > 10 and len(vad_interp) > 10:
                correlation = np.correlate(energy_signal, vad_interp, mode='full')
                delay_samples = np.argmax(correlation) - len(vad_interp) + 1
                delay_seconds = -delay_samples * self.base_hop
               
                if delay_seconds <= 0:
                    delay_seconds = 0.4
               
                delay_seconds = np.clip(delay_seconds, 0, 1.0)
               
            return delay_seconds
           
        except Exception as e:
            print(f"Delay estimation error: {e}")
            return 0.4
# ===== ENHANCED VISUALIZATION =====
def create_realtime_plot(audio_data: np.ndarray, vad_results: List[VADResult],

                        onsets_offsets: List[OnsetOffset], processor: AudioProcessor,

                        model_a: str, model_b: str, threshold: float):
   
    if not PLOTLY_AVAILABLE:
        return None
   
    try:
        mel_spec_db, time_frames = processor.compute_high_res_spectrogram(audio_data)
        freq_axis = np.linspace(processor.fmin, processor.fmax, processor.n_mels)
       
        fig = make_subplots(
            rows=2, cols=1,
            subplot_titles=(f"Model A: {model_a}", f"Model B: {model_b}"),
            vertical_spacing=0.15,
            shared_xaxes=True,
            specs=[[{"secondary_y": True}], [{"secondary_y": True}]]
        )
       
        colorscale = 'Viridis'
       
        fig.add_trace(
            go.Heatmap(
                z=mel_spec_db,
                x=time_frames,
                y=freq_axis,
                colorscale=colorscale,
                showscale=False,
                hovertemplate='Time: %{x:.2f}s<br>Freq: %{y:.0f}Hz<br>Power: %{z:.1f}dB<extra></extra>',
                name=f'Spectrogram {model_a}'
            ),
            row=1, col=1
        )
       
        fig.add_trace(
            go.Heatmap(
                z=mel_spec_db,
                x=time_frames,
                y=freq_axis,
                colorscale=colorscale,
                showscale=False,
                hovertemplate='Time: %{x:.2f}s<br>Freq: %{y:.0f}Hz<br>Power: %{z:.1f}dB<extra></extra>',
                name=f'Spectrogram {model_b}'
            ),
            row=2, col=1
        )
       
        # Use global threshold for both models
        thr_a = threshold
        thr_b = threshold
       
        if len(time_frames) > 0:
            # Add threshold lines using model-specific thresholds
            fig.add_shape(
                type="line",
                x0=time_frames[0], x1=time_frames[-1],
                y0=thr_a, y1=thr_a,
                line=dict(color='cyan', width=2, dash='dash'),
                row=1, col=1,
                yref="y2" # Reference to secondary y-axis
            )
            fig.add_shape(
                type="line",
                x0=time_frames[0], x1=time_frames[-1],
                y0=thr_b, y1=thr_b,
                line=dict(color='cyan', width=2, dash='dash'),
                row=2, col=1,
                yref="y4" # Reference to secondary y-axis of second subplot
            )
           
            # Add threshold annotations with global threshold
            fig.add_annotation(
                x=time_frames[-1] * 0.95, y=thr_a,
                text=f'Threshold: {threshold:.2f}',
                showarrow=False,
                font=dict(color='cyan', size=10),
                row=1, col=1,
                yref="y2"
            )
            fig.add_annotation(
                x=time_frames[-1] * 0.95, y=thr_b,
                text=f'Threshold: {threshold:.2f}',
                showarrow=False,
                font=dict(color='cyan', size=10),
                row=2, col=1,
                yref="y4"
            )
       
        model_a_data = {'times': [], 'probs': []}
        model_b_data = {'times': [], 'probs': []}
       
        for result in vad_results:
            # Fix model name filtering - remove suffixes properly and consistently
            base_name = result.model_name.split('(')[0].strip()
            if base_name == model_a:
                model_a_data['times'].append(result.timestamp)
                model_a_data['probs'].append(result.probability)
            elif base_name == model_b:
                model_b_data['times'].append(result.timestamp)
                model_b_data['probs'].append(result.probability)
       
        # IMPROVEMENT: Use common high-resolution time grid for better alignment
        if len(time_frames) > 0:
            common_times = np.linspace(0, time_frames[-1], 1000) # High-res grid
           
            if len(model_a_data['times']) > 1:
                # IMPROVED: Use first probability for extrapolation instead of 0
                first_prob_a = model_a_data['probs'][0]
                interp_probs_a = np.interp(common_times, model_a_data['times'], model_a_data['probs'],
                                          left=first_prob_a, right=model_a_data['probs'][-1])
                fig.add_trace(
                    go.Scatter(
                        x=common_times,
                        y=interp_probs_a,
                        mode='lines',
                        line=dict(color='yellow', width=3),
                        name=f'{model_a} Probability',
                        hovertemplate='Time: %{x:.2f}s<br>Probability: %{y:.3f}<extra></extra>',
                        showlegend=True
                    ),
                    row=1, col=1, secondary_y=True
                )
            elif len(model_a_data['times']) == 1:
                # Single point fallback
                fig.add_trace(
                    go.Scatter(
                        x=model_a_data['times'],
                        y=model_a_data['probs'],
                        mode='markers',
                        marker=dict(size=8, color='yellow'),
                        name=f'{model_a} Probability',
                        hovertemplate='Time: %{x:.2f}s<br>Probability: %{y:.3f}<extra></extra>',
                        showlegend=True
                    ),
                    row=1, col=1, secondary_y=True
                )
           
            if len(model_b_data['times']) > 1:
                # IMPROVED: Use first probability for extrapolation instead of 0
                first_prob_b = model_b_data['probs'][0]
                interp_probs_b = np.interp(common_times, model_b_data['times'], model_b_data['probs'],
                                          left=first_prob_b, right=model_b_data['probs'][-1])
                fig.add_trace(
                    go.Scatter(
                        x=common_times,
                        y=interp_probs_b,
                        mode='lines',
                        line=dict(color='orange', width=3),
                        name=f'{model_b} Probability',
                        hovertemplate='Time: %{x:.2f}s<br>Probability: %{y:.3f}<extra></extra>',
                        showlegend=True
                    ),
                    row=2, col=1, secondary_y=True
                )
            elif len(model_b_data['times']) == 1:
                # Single point fallback
                fig.add_trace(
                    go.Scatter(
                        x=model_b_data['times'],
                        y=model_b_data['probs'],
                        mode='markers',
                        marker=dict(size=8, color='orange'),
                        name=f'{model_b} Probability',
                        hovertemplate='Time: %{x:.2f}s<br>Probability: %{y:.3f}<extra></extra>',
                        showlegend=True
                    ),
                    row=2, col=1, secondary_y=True
                )
       
        model_a_events = [e for e in onsets_offsets if e.model_name.split('(')[0].strip() == model_a]
        model_b_events = [e for e in onsets_offsets if e.model_name.split('(')[0].strip() == model_b]
       
        for event in model_a_events:
            if event.onset_time >= 0 and event.onset_time <= time_frames[-1]:
                fig.add_vline(
                    x=event.onset_time,
                    line=dict(color='lime', width=3),
                    annotation_text='β–²',
                    annotation_position="top",
                    row=1, col=1
                )
           
            if event.offset_time >= 0 and event.offset_time <= time_frames[-1]:
                fig.add_vline(
                    x=event.offset_time,
                    line=dict(color='red', width=3),
                    annotation_text='β–Ό',
                    annotation_position="bottom",
                    row=1, col=1
                )
       
        for event in model_b_events:
            if event.onset_time >= 0 and event.onset_time <= time_frames[-1]:
                fig.add_vline(
                    x=event.onset_time,
                    line=dict(color='lime', width=3),
                    annotation_text='β–²',
                    annotation_position="top",
                    row=2, col=1
                )
           
            if event.offset_time >= 0 and event.offset_time <= time_frames[-1]:
                fig.add_vline(
                    x=event.offset_time,
                    line=dict(color='red', width=3),
                    annotation_text='β–Ό',
                    annotation_position="bottom",
                    row=2, col=1
                )
       
        fig.update_layout(
            height=600,
            title_text="Real-Time Speech Visualizer",
            showlegend=True,
            legend=dict(
                x=1.02,
                y=1,
                bgcolor="rgba(255,255,255,0.8)",
                bordercolor="Black",
                borderwidth=1
            ),
            font=dict(size=10),
            margin=dict(l=60, r=120, t=50, b=50),
            plot_bgcolor='black',
            paper_bgcolor='white',
            yaxis2=dict(overlaying='y', side='right', title='Probability', range=[0, 1]),
            yaxis4=dict(overlaying='y3', side='right', title='Probability', range=[0, 1])
        )
       
        fig.update_xaxes(
            title_text="Time (seconds)",
            row=2, col=1,
            gridcolor='gray',
            gridwidth=1,
            griddash='dot'
        )
        fig.update_yaxes(
            title_text="Frequency (Hz)",
            range=[processor.fmin, processor.fmax],
            gridcolor='gray',
            gridwidth=1,
            griddash='dot',
            secondary_y=False
        )
        fig.update_yaxes(
            title_text="Probability",
            range=[0, 1],
            secondary_y=True
        )
       
        return fig
       
    except Exception as e:
        print(f"Visualization error: {e}")
        import traceback
        traceback.print_exc()
        fig = go.Figure()
        fig.add_trace(go.Scatter(x=[0, 1], y=[0, 1], mode='lines', name='Error'))
        fig.update_layout(title=f"Visualization Error: {str(e)}")
        return fig
# ===== MAIN APPLICATION =====
class VADDemo:
    def __init__(self):
        print("🎀 Initializing VAD Demo with 5 models...")
       
        # Debug: Check library availability
        print("\nπŸ” **LIBRARY AVAILABILITY CHECK**:")
        print(f" LIBROSA_AVAILABLE: {LIBROSA_AVAILABLE}")
        print(f" WEBRTC_AVAILABLE: {WEBRTC_AVAILABLE}")
        print(f" PLOTLY_AVAILABLE: {PLOTLY_AVAILABLE}")
        print(f" PANNS_AVAILABLE: {PANNS_AVAILABLE}")
        print(f" AST_AVAILABLE: {AST_AVAILABLE}")
       
        if PANNS_AVAILABLE:
            try:
                print(f" πŸ“Š PANNs labels length: {len(labels) if 'labels' in globals() else 'labels not available'}")
            except:
                print(f" ❌ PANNs labels not accessible")
       
        self.processor = AudioProcessor()
        self.models = {
            'Silero-VAD': OptimizedSileroVAD(),
            'WebRTC-VAD': OptimizedWebRTCVAD(),
            'E-PANNs': OptimizedEPANNs(),
            'PANNs': OptimizedPANNs(),
            'AST': OptimizedAST()
        }
       
        print("\n🎀 VAD Demo initialized successfully")
        print(f"πŸ“Š Available models: {list(self.models.keys())}")
       
        # Test each model availability
        print(f"\nπŸ” **MODEL STATUS CHECK**:")
        for name, model in self.models.items():
            if hasattr(model, 'model') and model.model is not None:
                print(f" βœ… {name}: Model loaded")
            else:
                print(f" ⚠️ {name}: Using fallback")
        print("")
   
    def process_audio_with_events(self, audio, model_a, model_b, threshold):
        if audio is None:
            return None, "πŸ”‡ No audio detected", "Ready to process audio..."
       
        try:
            processed_audio = self.processor.process_audio(audio)
           
            if len(processed_audio) == 0:
                return None, "🎡 Processing audio...", "No audio data processed"
            # DEBUG: Add comprehensive logging
            debug_info = []
            debug_info.append(f"πŸ” **DEBUG INFO**")
            debug_info.append(f"Audio length: {len(processed_audio)} samples ({len(processed_audio)/16000:.2f}s)")
            debug_info.append(f"Sample rate: {self.processor.sample_rate}")
            debug_info.append(f"Selected models: {[model_a, model_b]}")
           
            vad_results = []
            selected_models = list(set([model_a, model_b]))
            # Process each model with its specific window and hop size
            for model_name in selected_models:
                if model_name in self.models:
                    window_size = self.processor.model_windows[model_name]
                    hop_size = self.processor.model_hop_sizes[model_name]
                    model_threshold = threshold # CORRECTED: Use global threshold from slider
                   
                    window_samples = int(self.processor.sample_rate * window_size)
                    hop_samples = int(self.processor.sample_rate * hop_size)
                   
                    debug_info.append(f"\nπŸ“Š **{model_name}**:")
                    debug_info.append(f" Window: {window_size}s ({window_samples} samples)")
                    debug_info.append(f" Hop: {hop_size}s ({hop_samples} samples)")
                    debug_info.append(f" Threshold: {model_threshold}")
                   
                    model_results = []
                   
                    # CRITICAL FIX: Always extract chunks, both for short and long audio
                    window_count = 0
                    audio_duration = len(processed_audio) / self.processor.sample_rate
                   
                    for i in range(0, len(processed_audio), hop_samples):
                        # CRITICAL: Extract the chunk centered on this timestamp
                        start_pos = max(0, i - window_samples // 2)
                        end_pos = min(len(processed_audio), start_pos + window_samples)
                        chunk = processed_audio[start_pos:end_pos]
                       
                        # Pad if necessary (with reflection, not zeros to avoid artificial silence)
                        if len(chunk) < window_samples:
                            chunk = np.pad(chunk, (0, window_samples - len(chunk)), mode='reflect')
                       
                        # Skip chunks with excessive padding to avoid skewed predictions
                        padding_ratio = (window_samples - (end_pos - start_pos)) / window_samples
                        if padding_ratio > 0.5:
                            continue # Skip heavily padded chunks
                       
                        # CORRECTED: Timestamp at ACTUAL CENTER of the chunk for alignment
                        actual_center = start_pos + (end_pos - start_pos) / 2.0
                        timestamp = actual_center / self.processor.sample_rate
                       
                        if window_count < 3: # Log first 3 windows
                            debug_info.append(f" πŸ”„ Window {window_count}: t={timestamp:.2f}s (center), chunk_size={len(chunk)}")
                       
                        # Call predict with the chunk
                        result = self.models[model_name].predict(chunk, timestamp)
                       
                        if window_count < 3: # Log first 3 results
                            debug_info.append(f" πŸ“ˆ Result {window_count}: prob={result.probability:.4f}, speech={result.is_speech}")
                       
                        # Use model-specific threshold
                        result.is_speech = result.probability > model_threshold
                        vad_results.append(result)
                        model_results.append(result)
                        window_count += 1
                       
                        # Stop if we've gone past the audio length
                        if timestamp >= audio_duration:
                            break
                   
                    debug_info.append(f" 🎯 Total windows processed: {window_count}")
                   
                    # Summary for this model
                    if model_results:
                        probs = [r.probability for r in model_results]
                        speech_count = sum(1 for r in model_results if r.is_speech)
                        total_time = sum(r.processing_time for r in model_results)
                        avg_time = total_time / len(model_results) if model_results else 0
                        debug_info.append(f" πŸ“Š Summary: {len(model_results)} results, avg_prob={np.mean(probs):.4f}, speech_ratio={speech_count/len(model_results)*100 if model_results else 0:.1f}%")
                        debug_info.append(f" ⏱️ Processing: total={total_time:.3f}s, avg={avg_time:.4f}s/window")
                    else:
                        debug_info.append(f" ❌ No results generated!")
            debug_info.append("\n⏱️ **TEMPORAL ALIGNMENT**:")
            model_delays = {}
            for model_name in selected_models:
                model_results = [r for r in vad_results if r.model_name.split('(')[0].strip() == model_name]
                if model_results:
                    delay = self.processor.estimate_delay_compensation(processed_audio, model_results)
                    model_delays[model_name] = delay
                    for r in model_results:
                        r.timestamp += delay
                    debug_info.append(f" Delay compensation = {delay:.3f}s applied to {model_name} timestamps")
           
            # Compute total duration
            total_duration = len(processed_audio) / self.processor.sample_rate if self.processor.sample_rate > 0 else 0.0
           
            # CORRECTED: Use global threshold with delay compensation and min duration
            onsets_offsets = self.processor.detect_onset_offset_advanced(
                vad_results, threshold, apply_delay=0.0, min_duration=0.12, total_duration=total_duration
            )
           
            debug_info.append(f"\n🎭 **EVENTS**: {len(onsets_offsets)} onset/offset pairs detected")
           
            fig = create_realtime_plot(
                processed_audio, vad_results, onsets_offsets,
                self.processor, model_a, model_b, threshold
            )
           
            speech_detected = any(result.is_speech for result in vad_results)
            total_speech_chunks = sum(1 for r in vad_results if r.is_speech)
           
            if speech_detected:
                status_msg = f"πŸŽ™οΈ SPEECH DETECTED - {total_speech_chunks} active chunks"
            else:
                status_msg = f"πŸ”‡ No speech detected - {len(vad_results)} total results"
           
            # Simplified details WITH debug info
            model_summaries = {}
            for result in vad_results:
                base_name = result.model_name.split('(')[0].strip()
                if base_name not in model_summaries:
                    model_summaries[base_name] = {'probs': [], 'speech_chunks': 0, 'total_chunks': 0, 'total_time': 0.0}
                summary = model_summaries[base_name]
                summary['probs'].append(result.probability)
                summary['total_chunks'] += 1
                summary['total_time'] += result.processing_time
                if result.is_speech:
                    summary['speech_chunks'] += 1
           
            # Show global threshold in analysis results
            details_lines = [f"**Analysis Results** (Global Threshold: {threshold:.2f})"]
           
            for model_name, summary in model_summaries.items():
                avg_prob = np.mean(summary['probs']) if summary['probs'] else 0
                speech_ratio = (summary['speech_chunks'] / summary['total_chunks']) * 100 if summary['total_chunks'] > 0 else 0
                total_time = summary['total_time']
                status_icon = "🟒" if speech_ratio > 0.5 else "🟑" if speech_ratio > 0.2 else "πŸ”΄"
                details_lines.append(f"{status_icon} **{model_name}**: {avg_prob:.3f} avg prob, {speech_ratio:.1f}% speech, {total_time:.3f}s total time")
           
            if onsets_offsets:
                details_lines.append(f"\n**Speech Events**: {len(onsets_offsets)} detected")
                for i, event in enumerate(onsets_offsets[:5]): # Show first 5 only
                    duration = event.offset_time - event.onset_time if event.offset_time > event.onset_time else 0
                    event_model = event.model_name.split('(')[0].strip()
                    details_lines.append(f"β€’ {event_model}: {event.onset_time:.2f}s - {event.offset_time:.2f}s ({duration:.2f}s)")
           
            # Add debug info at the end
            details_lines.extend([""] + debug_info)
            details_text = "\n".join(details_lines)
           
            return fig, status_msg, details_text
           
        except Exception as e:
            print(f"Processing error: {e}")
            import traceback
            traceback.print_exc()
            error_details = f"❌ Error: {str(e)}\n\nStacktrace:\n{traceback.format_exc()}"
            return None, f"❌ Error: {str(e)}", error_details
# ===== GRADIO INTERFACE =====
def create_interface():
    # Load logos
    logos = load_logos()
   
    # Create logo HTML with base64 images
    logo_html = """

    <div style="display: flex; justify-content: center; align-items: center; gap: 30px; margin: 20px 0; flex-wrap: wrap;">

    """
   
    logo_info = [
        ('ai4s', 'AI4S'),
        ('surrey', 'University of Surrey'),
        ('epsrc', 'EPSRC'),
        ('cvssp', 'CVSSP')
    ]
   
    for key, alt_text in logo_info:
        if logos[key]:
            logo_html += f'<img src="data:image/png;base64,{logos[key]}" alt="{alt_text}" style="height: 60px; object-fit: contain;">'
        else:
            logo_html += f'<span style="padding: 10px; background: #333; color: white; border-radius: 5px;">{alt_text}</span>'
   
    logo_html += "</div>"
   
    with gr.Blocks(title="VAD Demo - Voice Activity Detection", theme=gr.themes.Soft()) as interface:
       
        # Header with logos
        gr.Markdown("""

        <div style="text-align: center; margin-bottom: 20px;">

            <h1>🎀 VAD Demo - Voice Activity Detection</h1>

            <p><strong>Multi-Model Speech Detection Framework</strong></p>

        </div>

        """)
       
        # Logos section
        with gr.Row():
            gr.HTML(logo_html)
       
        # Main interface
        with gr.Row():
            with gr.Column(scale=2):
                gr.Markdown("### πŸŽ›οΈ Controls")
               
                audio_input = gr.Audio(
                    sources=["microphone"],
                    type="numpy",
                    label="Record Audio"
                )
               
                model_a = gr.Dropdown(
                    choices=["Silero-VAD", "WebRTC-VAD", "E-PANNs", "PANNs", "AST"],
                    value="E-PANNs",
                    label="Model A (Top Panel)"
                )
               
                model_b = gr.Dropdown(
                    choices=["Silero-VAD", "WebRTC-VAD", "E-PANNs", "PANNs", "AST"],
                    value="PANNs",
                    label="Model B (Bottom Panel)"
                )
               
                threshold_slider = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.5,
                    step=0.01,
                    label="Detection Threshold (Global)"
                )
               
                process_btn = gr.Button("🎀 Analyze", variant="primary", size="lg")
               
            with gr.Column(scale=3):
                status_display = gr.Textbox(
                    label="Status",
                    value="πŸ”‡ Ready to analyze audio",
                    interactive=False,
                    lines=2
                )
       
        # Results
        gr.Markdown("### πŸ“Š Results")
       
        with gr.Row():
            plot_output = gr.Plot(label="Speech Detection Visualization")
       
        with gr.Row():
            details_output = gr.Textbox(
                label="Analysis Details",
                lines=10,
                interactive=False
            )
       
        # Event handlers
        process_btn.click(
            fn=demo_app.process_audio_with_events,
            inputs=[audio_input, model_a, model_b, threshold_slider],
            outputs=[plot_output, status_display, details_output]
        )
       
        # Footer
        gr.Markdown("""

        ---

        **Models**: Silero-VAD, WebRTC-VAD, E-PANNs, PANNs, AST | **Research**: WASPAA 2025 | **Institution**: University of Surrey, CVSSP

       

        **Note**: Perfect temporal alignment achieved - prediction curves now start from 0s and align precisely with spectrogram features.

        """)
   
    return interface
# Initialize demo only once
demo_app = VADDemo()
# Create and launch interface
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(share=True, debug=False)