File size: 3,004 Bytes
2f3144c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import os
import traceback
import spaces  # Ensure import for GPU management

# Load the Byaldi and Qwen2-VL models without using .cuda()
rag_model = RAGMultiModalModel.from_pretrained("vidore/colpali")
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16
)

# Processor for Qwen2-VL
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)

@spaces.GPU  # Decorate the function for GPU management
def ocr_and_extract(image, text_query):
    try:
        # Save the uploaded image temporarily
        temp_image_path = "temp_image.jpg"
        image.save(temp_image_path)

        # Index the image with Byaldi
        rag_model.index(
            input_path=temp_image_path,
            index_name="image_index",
            store_collection_with_index=False,
            overwrite=True
        )

        # Perform the search query on the indexed image
        results = rag_model.search(text_query, k=1)

        # Prepare the input for Qwen2-VL
        image_data = Image.open(temp_image_path)

        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image_data},
                    {"type": "text", "text": text_query},
                ],
            }
        ]

        # Process the message and prepare for Qwen2-VL
        text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, _ = process_vision_info(messages)

        inputs = processor(
            text=[text_input],
            images=image_inputs,
            padding=True,
            return_tensors="pt",
        )

        # Move the Qwen2-VL model and inputs to GPU
        qwen_model.to("cuda")
        inputs = {k: v.to("cuda") for k, v in inputs.items()}

        # Generate the output with Qwen2-VL
        generated_ids = qwen_model.generate(**inputs, max_new_tokens=50)
        output_text = processor.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

        # Clean up the temporary file
        os.remove(temp_image_path)

        return output_text[0]

    except Exception as e:
        error_message = str(e)
        traceback.print_exc()
        return f"Error: {error_message}"

# Gradio interface for image input
iface = gr.Interface(
    fn=ocr_and_extract,
    inputs=[
        gr.Image(type="pil"),
        gr.Textbox(label="Enter your query (optional)"),
    ],
    outputs="text",
    title="Image OCR with Byaldi + Qwen2-VL",
    description="Upload an image (JPEG/PNG) containing Hindi and English text for OCR.",
)

# Launch the Gradio app
iface.launch()