File size: 1,037 Bytes
ffc9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import gradio as gr
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM

# Base model and your LoRA adapter
base_model = "mistralai/Mistral-7B-Instruct-v0.1"
adapter_repo = "gaurav2003/room-service-chatbot"

# Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
    base_model,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load your LoRA adapter
model = PeftModel.from_pretrained(model, adapter_repo)
model.eval()

# Chat function
def generate_response(message, history):
    input_text = message
    inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(**inputs, max_new_tokens=512)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Gradio Interface
chatbot = gr.ChatInterface(fn=generate_response, title="Room Service Chatbot")

if __name__ == "__main__":
    chatbot.launch()