Spaces:
Runtime error
Runtime error
File size: 11,585 Bytes
b9479e3 7c1a71d 1ddb223 b9479e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
os.system("pip uninstall mmcv-full")
os.system("mim install 'mmengine>=0.6.0'")
os.system("mim install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("mim install 'mmdet>=3.0.0,<4.0.0'")
os.system("mim install 'mmyolo'")
import fnmatch
import glob
import os
import PIL.Image
import cv2
import gradio as gr
from argparse import Namespace
from pathlib import Path
import mmcv
import torch
from mmdet.apis import inference_detector, init_detector
from mmengine.config import Config, ConfigDict
from mmengine.logging import print_log
from mmengine.utils import ProgressBar, path
from mmyolo.registry import VISUALIZERS
from mmyolo.utils import switch_to_deploy
from mmyolo.utils.labelme_utils import LabelmeFormat
from mmyolo.utils.misc import get_file_list, show_data_classes
from mim import download
import warnings
warnings.filterwarnings("ignore")
ckpt_path = "./checkpoint"
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
model_list = ['yolov5_n-v61_syncbn_fast_8xb16-300e_coco', 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_m-v61_syncbn_fast_8xb16-300e_coco', 'yolov5_l-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_x-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco', 'yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco',
'yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco',
'yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco', 'yolov5_n-v61_fast_1xb64-50e_voc',
'yolov5_s-v61_fast_1xb64-50e_voc',
'yolov5_m-v61_fast_1xb64-50e_voc', 'yolov5_l-v61_fast_1xb32-50e_voc',
'yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
'yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance',
'yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance',
'yolov6_s_syncbn_fast_8xb32-400e_coco', 'yolov6_n_syncbn_fast_8xb32-400e_coco',
'yolov6_t_syncbn_fast_8xb32-400e_coco',
'yolov6_m_syncbn_fast_8xb32-300e_coco', 'yolov6_l_syncbn_fast_8xb32-300e_coco',
'yolox_tiny_fast_8xb8-300e_coco',
'yolox_s_fast_8xb8-300e_coco', 'yolox_m_fast_8xb8-300e_coco', 'yolox_l_fast_8xb8-300e_coco',
'yolox_x_fast_8xb8-300e_coco',
'yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco', 'yolox_s_fast_8xb32-300e-rtmdet-hyp_coco',
'yolox_m_fast_8xb32-300e-rtmdet-hyp_coco',
'yolox-pose_tiny_8xb32-300e-rtmdet-hyp_coco', 'yolox-pose_s_8xb32-300e-rtmdet-hyp_coco',
'yolox-pose_m_8xb32-300e-rtmdet-hyp_coco',
'yolox-pose_l_8xb32-300e-rtmdet-hyp_coco', 'rtmdet_tiny_syncbn_fast_8xb32-300e_coco',
'kd_tiny_rtmdet_s_neck_300e_coco',
'rtmdet_s_syncbn_fast_8xb32-300e_coco', 'kd_s_rtmdet_m_neck_300e_coco',
'rtmdet_m_syncbn_fast_8xb32-300e_coco',
'kd_m_rtmdet_l_neck_300e_coco', 'rtmdet_l_syncbn_fast_8xb32-300e_coco',
'kd_l_rtmdet_x_neck_300e_coco',
'rtmdet_x_syncbn_fast_8xb32-300e_coco', 'rtmdet-r_tiny_fast_1xb8-36e_dota',
'rtmdet-r_s_fast_1xb8-36e_dota',
'rtmdet-r_m_syncbn_fast_2xb4-36e_dota', 'rtmdet-r_l_syncbn_fast_2xb4-36e_dota',
'rtmdet-r_l_syncbn_fast_2xb4-aug-100e_dota',
'yolov7_tiny_syncbn_fast_8x16b-300e_coco', 'yolov7_l_syncbn_fast_8x16b-300e_coco',
'yolov7_x_syncbn_fast_8x16b-300e_coco',
'yolov7_w-p6_syncbn_fast_8x16b-300e_coco', 'yolov7_e-p6_syncbn_fast_8x16b-300e_coco',
'ppyoloe_plus_s_fast_8xb8-80e_coco',
'ppyoloe_plus_m_fast_8xb8-80e_coco', 'ppyoloe_plus_L_fast_8xb8-80e_coco',
'ppyoloe_plus_x_fast_8xb8-80e_coco',
'yolov8_n_syncbn_fast_8xb16-500e_coco', 'yolov8_s_syncbn_fast_8xb16-500e_coco',
'yolov8_m_syncbn_fast_8xb16-500e_coco',
'yolov8_l_syncbn_fast_8xb16-500e_coco', 'yolov8_x_syncbn_fast_8xb16-500e_coco',
'yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco',
'yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco']
def download_test_image():
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
'bus.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
'dogs.jpg')
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
'zidane.jpg')
import shutil
def clear_folder(folder_path):
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
print(f"Clear {folder_path} successfully.")
def download_cfg_checkpoint_model_name(model_name):
clear_folder("./checkpoint")
download(package='mmyolo',
configs=[model_name],
dest_root='./checkpoint')
def detect_objects(args):
config = args.config
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
# build the model from a config file and a checkpoint file
model = init_detector(
config, args.checkpoint, device=args.device, cfg_options={})
if not args.show:
path.mkdir_or_exist(args.out_dir)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta
# get file list
files, source_type = get_file_list(args.img)
# get model class name
dataset_classes = model.dataset_meta.get('classes')
# check class name
if args.class_name is not None:
for class_name in args.class_name:
if class_name in dataset_classes:
continue
show_data_classes(dataset_classes)
raise RuntimeError(
'Expected args.class_name to be one of the list, '
f'but got "{class_name}"')
# start detector inference
progress_bar = ProgressBar(len(files))
for file in files:
result = inference_detector(model, file)
img = mmcv.imread(file)
img = mmcv.imconvert(img, 'bgr', 'rgb')
if source_type['is_dir']:
filename = os.path.relpath(file, args.img).replace('/', '_')
else:
filename = os.path.basename(file)
out_file = None if args.show else os.path.join(args.out_dir, filename)
progress_bar.update()
# Get candidate predict info with score threshold
pred_instances = result.pred_instances[
result.pred_instances.scores > args.score_thr]
visualizer.add_datasample(
filename,
img,
data_sample=result,
draw_gt=False,
show=args.show,
wait_time=0,
out_file=out_file,
pred_score_thr=args.score_thr)
def object_detection(img, model_name, out_dir, device, show, score_thr, class_name):
download_cfg_checkpoint_model_name(model_name)
path = "./checkpoint"
config = [f for f in os.listdir(path) if fnmatch.fnmatch(f, model_name + "*.py")][0]
config = path + "/" + config
checkpoint = [f for f in os.listdir(path) if fnmatch.fnmatch(f, model_name + "*.pth")][0]
checkpoint = path + "/" + checkpoint
img_path = "input_img.jpg"
img.save("input_img.jpg")
args = Namespace(
img=img_path,
config=config,
checkpoint=checkpoint,
out_dir=out_dir,
device=device,
show=show,
score_thr=score_thr,
class_name=class_name,
)
detect_objects(args)
img_out = PIL.Image.open(os.path.join(out_dir, img_path))
return img_out
inputs = [
gr.inputs.Image(type="pil", label="input"),
gr.inputs.Dropdown(choices=[m for m in model_list], label='Model', default='yolov5_s-v61_syncbn_fast_8xb16-300e_coco'),
gr.inputs.Textbox(default="./output", label="output"),
gr.inputs.Radio(["cuda:0", "cpu"], default="cpu", label="device"),
gr.inputs.Checkbox(default=False, label="show"),
gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.3, label="score_thr"),
gr.inputs.Textbox(default=None, label="class_name"),
]
download_test_image()
examples = [
['bus.jpg', 'yolov5_n-v61_syncbn_fast_8xb16-300e_coco', './output', "cpu", False, 0.3, None],
['dogs.jpg', 'yolov6_s_syncbn_fast_8xb32-400e_coco', './output', "cpu", False, 0.3, None],
['zidane.jpg', 'rtmdet_tiny_syncbn_fast_8xb32-300e_coco', './output', "cpu", False, 0.3, None]
]
text_output = gr.outputs.Textbox(label="输出路径")
src_image = gr.outputs.Image(type="pil")
output_image = gr.outputs.Image(type="pil")
title = "MMYOLO detection web demo"
description = "<div align='center'><img src='https://user-images.githubusercontent.com/27466624/222385101-516e551c-49f5-480d-a135-4b24ee6dc308.png' width='800''/><div>" \
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmyolo'>MMYOLO</a> 是一个开源的物体检测工具箱,提供了丰富的检测模型和数据增强方式。" \
"OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.</p>"
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmyolo'>MMYOLO</a></p>" \
"<p style='text-align: center'><a href='https://github.com/isLinXu'>gradio build by gatilin</a></a></p>" \
gr.Interface(fn=object_detection, inputs=inputs, outputs=output_image,
examples=examples,
title=title,
description=description, article=article, allow_flagging=False).launch()
|