File size: 11,585 Bytes
b9479e3
 
7c1a71d
1ddb223
 
 
 
b9479e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

import os
os.system("pip uninstall mmcv-full")
os.system("mim install 'mmengine>=0.6.0'")
os.system("mim install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("mim install 'mmdet>=3.0.0,<4.0.0'")
os.system("mim install 'mmyolo'")

import fnmatch
import glob
import os
import PIL.Image
import cv2
import gradio as gr
from argparse import Namespace
from pathlib import Path

import mmcv
import torch
from mmdet.apis import inference_detector, init_detector
from mmengine.config import Config, ConfigDict
from mmengine.logging import print_log
from mmengine.utils import ProgressBar, path

from mmyolo.registry import VISUALIZERS
from mmyolo.utils import switch_to_deploy
from mmyolo.utils.labelme_utils import LabelmeFormat
from mmyolo.utils.misc import get_file_list, show_data_classes
from mim import download

import warnings

warnings.filterwarnings("ignore")

ckpt_path = "./checkpoint"
if not os.path.exists(ckpt_path):
    os.makedirs(ckpt_path)

model_list = ['yolov5_n-v61_syncbn_fast_8xb16-300e_coco', 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_m-v61_syncbn_fast_8xb16-300e_coco', 'yolov5_l-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_x-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco', 'yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco',
                       'yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco',
                       'yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco', 'yolov5_n-v61_fast_1xb64-50e_voc',
                       'yolov5_s-v61_fast_1xb64-50e_voc',
                       'yolov5_m-v61_fast_1xb64-50e_voc', 'yolov5_l-v61_fast_1xb32-50e_voc',
                       'yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco',
                       'yolov5_ins_n-v61_syncbn_fast_8xb16-300e_coco_instance',
                       'yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance',
                       'yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance',
                       'yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance',
                       'yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance',
                       'yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance',
                       'yolov6_s_syncbn_fast_8xb32-400e_coco', 'yolov6_n_syncbn_fast_8xb32-400e_coco',
                       'yolov6_t_syncbn_fast_8xb32-400e_coco',
                       'yolov6_m_syncbn_fast_8xb32-300e_coco', 'yolov6_l_syncbn_fast_8xb32-300e_coco',
                       'yolox_tiny_fast_8xb8-300e_coco',
                       'yolox_s_fast_8xb8-300e_coco', 'yolox_m_fast_8xb8-300e_coco', 'yolox_l_fast_8xb8-300e_coco',
                       'yolox_x_fast_8xb8-300e_coco',
                       'yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco', 'yolox_s_fast_8xb32-300e-rtmdet-hyp_coco',
                       'yolox_m_fast_8xb32-300e-rtmdet-hyp_coco',
                       'yolox-pose_tiny_8xb32-300e-rtmdet-hyp_coco', 'yolox-pose_s_8xb32-300e-rtmdet-hyp_coco',
                       'yolox-pose_m_8xb32-300e-rtmdet-hyp_coco',
                       'yolox-pose_l_8xb32-300e-rtmdet-hyp_coco', 'rtmdet_tiny_syncbn_fast_8xb32-300e_coco',
                       'kd_tiny_rtmdet_s_neck_300e_coco',
                       'rtmdet_s_syncbn_fast_8xb32-300e_coco', 'kd_s_rtmdet_m_neck_300e_coco',
                       'rtmdet_m_syncbn_fast_8xb32-300e_coco',
                       'kd_m_rtmdet_l_neck_300e_coco', 'rtmdet_l_syncbn_fast_8xb32-300e_coco',
                       'kd_l_rtmdet_x_neck_300e_coco',
                       'rtmdet_x_syncbn_fast_8xb32-300e_coco', 'rtmdet-r_tiny_fast_1xb8-36e_dota',
                       'rtmdet-r_s_fast_1xb8-36e_dota',
                       'rtmdet-r_m_syncbn_fast_2xb4-36e_dota', 'rtmdet-r_l_syncbn_fast_2xb4-36e_dota',
                       'rtmdet-r_l_syncbn_fast_2xb4-aug-100e_dota',
                       'yolov7_tiny_syncbn_fast_8x16b-300e_coco', 'yolov7_l_syncbn_fast_8x16b-300e_coco',
                       'yolov7_x_syncbn_fast_8x16b-300e_coco',
                       'yolov7_w-p6_syncbn_fast_8x16b-300e_coco', 'yolov7_e-p6_syncbn_fast_8x16b-300e_coco',
                       'ppyoloe_plus_s_fast_8xb8-80e_coco',
                       'ppyoloe_plus_m_fast_8xb8-80e_coco', 'ppyoloe_plus_L_fast_8xb8-80e_coco',
                       'ppyoloe_plus_x_fast_8xb8-80e_coco',
                       'yolov8_n_syncbn_fast_8xb16-500e_coco', 'yolov8_s_syncbn_fast_8xb16-500e_coco',
                       'yolov8_m_syncbn_fast_8xb16-500e_coco',
                       'yolov8_l_syncbn_fast_8xb16-500e_coco', 'yolov8_x_syncbn_fast_8xb16-500e_coco',
                       'yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco',
                       'yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco',
                       'yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco',
                       'yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco',
                       'yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco']


def download_test_image():
    # Images
    torch.hub.download_url_to_file(
        'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg',
        'bus.jpg')
    torch.hub.download_url_to_file(
        'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg',
        'dogs.jpg')
    torch.hub.download_url_to_file(
        'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg',
        'zidane.jpg')

import shutil

def clear_folder(folder_path):
    for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            print(f"Failed to delete {file_path}. Reason: {e}")
    print(f"Clear {folder_path} successfully.")

def download_cfg_checkpoint_model_name(model_name):
    clear_folder("./checkpoint")
    download(package='mmyolo',
             configs=[model_name],
             dest_root='./checkpoint')

def detect_objects(args):
    config = args.config

    if isinstance(config, (str, Path)):
        config = Config.fromfile(config)
    elif not isinstance(config, Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    if 'init_cfg' in config.model.backbone:
        config.model.backbone.init_cfg = None

    # build the model from a config file and a checkpoint file
    model = init_detector(
        config, args.checkpoint, device=args.device, cfg_options={})

    if not args.show:
        path.mkdir_or_exist(args.out_dir)

    # init visualizer
    visualizer = VISUALIZERS.build(model.cfg.visualizer)
    visualizer.dataset_meta = model.dataset_meta

    # get file list
    files, source_type = get_file_list(args.img)

    # get model class name
    dataset_classes = model.dataset_meta.get('classes')

    # check class name
    if args.class_name is not None:
        for class_name in args.class_name:
            if class_name in dataset_classes:
                continue
            show_data_classes(dataset_classes)
            raise RuntimeError(
                'Expected args.class_name to be one of the list, '
                f'but got "{class_name}"')

    # start detector inference
    progress_bar = ProgressBar(len(files))
    for file in files:
        result = inference_detector(model, file)

        img = mmcv.imread(file)
        img = mmcv.imconvert(img, 'bgr', 'rgb')

        if source_type['is_dir']:
            filename = os.path.relpath(file, args.img).replace('/', '_')
        else:
            filename = os.path.basename(file)
        out_file = None if args.show else os.path.join(args.out_dir, filename)

        progress_bar.update()

        # Get candidate predict info with score threshold
        pred_instances = result.pred_instances[
            result.pred_instances.scores > args.score_thr]

        visualizer.add_datasample(
            filename,
            img,
            data_sample=result,
            draw_gt=False,
            show=args.show,
            wait_time=0,
            out_file=out_file,
            pred_score_thr=args.score_thr)


def object_detection(img, model_name, out_dir, device, show, score_thr, class_name):
    download_cfg_checkpoint_model_name(model_name)
    path = "./checkpoint"
    config = [f for f in os.listdir(path) if fnmatch.fnmatch(f, model_name + "*.py")][0]
    config = path + "/" + config

    checkpoint = [f for f in os.listdir(path) if fnmatch.fnmatch(f, model_name + "*.pth")][0]
    checkpoint = path + "/" + checkpoint

    img_path = "input_img.jpg"
    img.save("input_img.jpg")
    args = Namespace(
        img=img_path,
        config=config,
        checkpoint=checkpoint,
        out_dir=out_dir,
        device=device,
        show=show,
        score_thr=score_thr,
        class_name=class_name,
    )
    detect_objects(args)
    img_out = PIL.Image.open(os.path.join(out_dir, img_path))
    return img_out

inputs = [
    gr.inputs.Image(type="pil", label="input"),
    gr.inputs.Dropdown(choices=[m for m in model_list], label='Model', default='yolov5_s-v61_syncbn_fast_8xb16-300e_coco'),
    gr.inputs.Textbox(default="./output", label="output"),
    gr.inputs.Radio(["cuda:0", "cpu"], default="cpu", label="device"),
    gr.inputs.Checkbox(default=False, label="show"),
    gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.3, label="score_thr"),
    gr.inputs.Textbox(default=None, label="class_name"),
]

download_test_image()

examples = [
    ['bus.jpg', 'yolov5_n-v61_syncbn_fast_8xb16-300e_coco', './output', "cpu", False, 0.3, None],
    ['dogs.jpg', 'yolov6_s_syncbn_fast_8xb32-400e_coco', './output', "cpu", False, 0.3, None],
    ['zidane.jpg', 'rtmdet_tiny_syncbn_fast_8xb32-300e_coco', './output', "cpu", False, 0.3, None]
]

text_output = gr.outputs.Textbox(label="输出路径")
src_image = gr.outputs.Image(type="pil")
output_image = gr.outputs.Image(type="pil")

title = "MMYOLO detection web demo"
description = "<div align='center'><img src='https://user-images.githubusercontent.com/27466624/222385101-516e551c-49f5-480d-a135-4b24ee6dc308.png' width='800''/><div>" \
              "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmyolo'>MMYOLO</a> 是一个开源的物体检测工具箱,提供了丰富的检测模型和数据增强方式。" \
              "OpenMMLab YOLO series toolbox and benchmark. Implemented RTMDet, RTMDet-Rotated,YOLOv5, YOLOv6, YOLOv7, YOLOv8,YOLOX, PPYOLOE, etc.</p>"
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmyolo'>MMYOLO</a></p>" \
          "<p style='text-align: center'><a href='https://github.com/isLinXu'>gradio build by gatilin</a></a></p>" \


gr.Interface(fn=object_detection, inputs=inputs, outputs=output_image,
             examples=examples,
             title=title,
             description=description, article=article, allow_flagging=False).launch()