Spaces:
Sleeping
Sleeping
File size: 37,736 Bytes
0683257 c52ea91 0683257 60430de 0683257 b2ce569 97e7a94 0683257 b2ce569 0683257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
import os
os.system("pip install torch torchvision")
os.system("git clone https://github.com/IDEA-Research/detrex.git")
os.system("python -m pip install git+https://github.com/facebookresearch/detectron2.git@v0.6#egg=detectron2")
os.system("python -m pip install git+https://github.com/IDEA-Research/detrex.git@v0.5.0#egg=detrex")
os.system("git submodule sync")
os.system("git submodule update --init")
os.system("pip install fairscale")
os.system("pip install Pillow==9.5.0")
# os.system("cd detrex && pip install -e .")
import argparse
import glob
import multiprocessing as mp
import numpy as np
import os
import sys
import tempfile
import time
import warnings
import cv2
import torch
import tqdm
import gradio as gr
# from demo.predictors import VisualizationDemo
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
import warnings
warnings.filterwarnings("ignore")
import atexit
import bisect
from copy import copy
import multiprocessing as mp
from collections import deque
import cv2
import torch
import detectron2.data.transforms as T
from detectron2.data import MetadataCatalog
from detectron2.structures import Instances
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
def filter_predictions_with_confidence(predictions, confidence_threshold=0.5):
if "instances" in predictions:
preds = predictions["instances"]
keep_idxs = preds.scores > confidence_threshold
predictions = copy(predictions) # don't modify the original
predictions["instances"] = preds[keep_idxs]
return predictions
class VisualizationDemo(object):
def __init__(
self,
model,
min_size_test=800,
max_size_test=1333,
img_format="RGB",
metadata_dataset="coco_2017_val",
instance_mode=ColorMode.IMAGE,
parallel=False,
):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
metadata_dataset if metadata_dataset is not None else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
self.predictor = AsyncPredictor(
model=model,
min_size_test=min_size_test,
max_size_test=max_size_test,
img_format=img_format,
metadata_dataset=metadata_dataset,
num_gpus=num_gpu,
)
else:
self.predictor = DefaultPredictor(
model=model,
min_size_test=min_size_test,
max_size_test=max_size_test,
img_format=img_format,
metadata_dataset=metadata_dataset,
)
def run_on_image(self, image, threshold=0.5):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
vis_output = None
predictions = self.predictor(image)
predictions = filter_predictions_with_confidence(predictions, threshold)
# Convert image from OpenCV BGR format to Matplotlib RGB format.
image = image[:, :, ::-1]
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(self.cpu_device), segments_info
)
else:
if "sem_seg" in predictions:
vis_output = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
if "instances" in predictions:
instances = predictions["instances"].to(self.cpu_device)
vis_output = visualizer.draw_instance_predictions(predictions=instances)
return predictions, vis_output
def _frame_from_video(self, video):
while video.isOpened():
success, frame = video.read()
if success:
yield frame
else:
break
def run_on_video(self, video, threshold=0.5):
"""
Visualizes predictions on frames of the input video.
Args:
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
either a webcam or a video file.
Yields:
ndarray: BGR visualizations of each video frame.
"""
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
def process_predictions(frame, predictions, threshold):
predictions = filter_predictions_with_confidence(predictions, threshold)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_frame = video_visualizer.draw_panoptic_seg_predictions(
frame, panoptic_seg.to(self.cpu_device), segments_info
)
elif "instances" in predictions:
predictions = predictions["instances"].to(self.cpu_device)
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
elif "sem_seg" in predictions:
vis_frame = video_visualizer.draw_sem_seg(
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
# Converts Matplotlib RGB format to OpenCV BGR format
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
return vis_frame
frame_gen = self._frame_from_video(video)
if self.parallel:
buffer_size = self.predictor.default_buffer_size
frame_data = deque()
for cnt, frame in enumerate(frame_gen):
frame_data.append(frame)
self.predictor.put(frame)
if cnt >= buffer_size:
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions, threshold)
while len(frame_data):
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions, threshold)
else:
for frame in frame_gen:
yield process_predictions(frame, self.predictor(frame), threshold)
class DefaultPredictor:
def __init__(
self,
model,
min_size_test=800,
max_size_test=1333,
img_format="RGB",
metadata_dataset="coco_2017_val",
):
self.model = model
# self.model.eval()
self.metadata = MetadataCatalog.get(metadata_dataset)
# checkpointer = DetectionCheckpointer(self.model)
# checkpointer.load(init_checkpoint)
self.aug = T.ResizeShortestEdge([min_size_test, min_size_test], max_size_test)
self.input_format = img_format
assert self.input_format in ["RGB", "BGR"], self.input_format
def __call__(self, original_image):
"""
Args:
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
Returns:
predictions (dict):
the output of the model for one image only.
See :doc:`/tutorials/models` for details about the format.
"""
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
# Apply pre-processing to image.
if self.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = self.aug.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
predictions = self.model([inputs])[0]
return predictions
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(
self,
model,
task_queue,
result_queue,
min_size_test=800,
max_size_test=1333,
img_format="RGB",
metadata_dataset="coco_2017_val",
):
self.model = model
self.min_size_test = min_size_test
self.max_size_test = max_size_test
self.img_format = img_format
self.metadata_dataset = metadata_dataset
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = DefaultPredictor(
model=self.model,
min_size_test=self.min_size_test,
max_size_test=self.max_size_test,
img_format=self.img_format,
metadata_dataset=self.metadata_dataset,
)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5
detrex_model_list = {
# DETR
"detr/detr_r50_300ep": {
"configs": "projects/detr/configs/detr_r50_300ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_detr_r50_500ep.pth"
},
"detr/detr_r50_dc5_300ep": {
"configs": "projects/detr/configs/detr_r50_dc5_300ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_detr_r50_dc5.pth"
},
"detr/detr_r101_300ep.py": {
"configs": "projects/detr/configs/detr_r101_300ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_detr_r101_500ep.pth"
},
"detr/detr_r101_dc5_300ep.py": {
"configs": "projects/detr/configs/detr_r101_dc5_300ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_detr_r101_dc5.pth"
},
# Deformable-DETR
"deformable_detr/deformable_detr_r50_with_box_refinement_50ep": {
"configs": "projects/deformable_detr/configs/deformable_detr_r50_with_box_refinement_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/deformable_detr_with_box_refinement_50ep_new.pth"
},
"deformable_detr/deformable_detr_r50_two_stage_50ep": {
"configs": "projects/deformable_detr/configs/deformable_detr_r50_two_stage_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/deformable_detr_r50_two_stage_50ep_new.pth"
},
# Anchor-DETR
"anchor_detr/anchor_detr_r50_50ep":{
"configs":"projects/anchor_detr/configs/anchor_detr_r50_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/anchor_detr_r50_50ep.pth"
},
"anchor_detr/anchor_detr_r50_50ep_(converted)":{
"configs":"projects/anchor_detr/configs/anchor_detr_r50_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r50_50ep.pth"
},
"anchor_detr/anchor_detr_r50_dc5_50ep":{
"configs":"projects/anchor_detr/configs/anchor_detr_r50_dc5_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r50_dc5_50ep.pth"
},
"anchor_detr/anchor_detr_r101_50ep":{
"configs":"projects/anchor_detr/configs/anchor_detr_r101_dc5_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r101_dc5_50ep.pth"
},
"anchor_detr/anchor_detr_r101_dc5_50ep":{
"configs":"projects/anchor_detr/configs/anchor_detr_r101_dc5_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r101_50ep.pth"
},
# Conditional-DETR
"conditional_detr/conditional_detr_r50_50ep":{
"configs":"projects/conditional_detr/configs/conditional_detr_r50_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/conditional_detr_r50_50ep.pth"
},
"conditional_detr/conditional_detr_r50_50ep_(converted)":{
"configs":"",
"ckpts":""
},
"conditional_detr/conditional_detr_r101_50ep":{
"configs":"projects/conditional_detr/configs/conditional_detr_r101_50ep.py",
"ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_conditional_detr_r101_50ep.pth"
},
"conditional_detr/conditional_detr_r101_dc5_50ep": {
"configs": "projects/conditional_detr/configs/conditional_detr_r101_dc5_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_conditional_detr_r101_dc5.pth"
},
# DAB-DETR
"dab_detr/dab_detr_r50_50ep": {
"configs": "projects/dab_detr/configs/dab_detr_r50_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dab_detr_r50_50ep.pth"
},
"dab_detr/dab_detr_r50_3patterns_50ep": {
"configs": "projects/dab_detr/configs/dab_detr_r50_3patterns_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dab_detr_r50_3patterns.pth"
},
"dab_detr/dab_detr_r50_dc5_50ep": {
"configs": "projects/dab_detr/configs/dab_detr_r50_dc5_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dab_detr_r50_dc5.pth"
},
"dab_detr/dab_detr_r50_dc5_3patterns_50ep": {
"configs": "projects/dab_detr/configs/dab_detr_r50_3patterns_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dab_detr_r50_dc5_3patterns.pth"
},
"dab_detr/dab_detr_r101_50ep": {
"configs": "projects/dab_detr/configs/dab_detr_r101_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dab_detr_r101_50ep.pth"
},
"dab_detr/dab_detr_r50_dc5_3patterns_50ep_(converted)": {
"configs": "projects/dab_detr/configs/dab_detr_r50_dc5_3patterns_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_detr_r101_dc5.pth"
},
"dab_detr/dab_detr_swin_t_in1k_50ep": {
"configs": "projects/dab_detr/configs/dab_detr_swin_t_in1k_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dab_detr_swin_t_in1k_50ep.pth"
},
"dab_detr/dab_deformable_detr_r50_50ep": {
"configs": "projects/dab_detr/configs/dab_deformable_detr_r50_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dab_deformable_detr_r50_50ep_49AP.pth"
},
"dab_detr/dab_deformable_detr_r50_two_stage_50ep": {
"configs": "projects/dab_detr/configs/dab_deformable_detr_r50_two_stage_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dab_deformable_detr_r50_two_stage_49_7AP.pth"
},
# DN-DETR
"dn_detr/dn_detr_r50_50ep": {
"configs": "projects/dn_detr/configs/dn_detr_r50_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dn_detr_r50_50ep.pth"
},
"dn_detr/dn_detr_r50_dc5_50ep": {
"configs": "projects/dn_detr/configs/dn_detr_r50_dc5_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dn_detr_r50_dc5.pth"
},
# DINO
"dino/dino-resnet/dino_r50_5scale_12ep": {
"configs": "projects/dino/configs/dino-resnet/dino_r50_5scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_r50_5scale_12ep.pth"
},
"dino/dino-resnet/dino_r50_4scale_12ep_300dn": {
"configs": "projects/dino/configs/dino-resnet/dino_r50_4scale_12ep_300dn.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dino_r50_4scale_12ep_300dn.pth"
},
"dino/dino-resnet/dino_r50_4scale_24ep": {
"configs": "projects/dino/configs/dino-resnet/dino_r50_4scale_24ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_r50_4scale_24ep.pth"
},
"dino/dino-resnet/dino_r101_4scale_12ep_": {
"configs": "projects/dino/configs/dino-resnet/dino_r101_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_r101_4scale_12ep.pth"
},
# Pretrained DINO with Swin-Transformer Backbone
"dino/dino-swin/dino_swin_tiny_224_4scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_tiny_224_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_tiny_224_4scale_12ep.pth"
},
"dino/dino-swin/dino_swin_tiny_224_22kto1k_finetune_4scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_tiny_224_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_tiny_224_22kto1k_finetune_4scale_12ep.pth"
},
"dino/dino-swin/dino_swin_small_224_4scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_tiny_224_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_small_224_4scale_12ep.pth"
},
"dino/dino-swin/dino_swin_base_384_4scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_base_384_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_base_384_4scale_12ep.pth"
},
"dino/dino-swin/dino_swin_large_224_4scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_large_224_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_large_224_4scale_12ep.pth"
},
"dino/dino-swin/dino_swin_large_384_4scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_large_384_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_large_4scale_12ep.pth"
},
"dino/dino-swin/dino_swin_large_384_5scale_12ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_large_384_5scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_swin_large_384_5scale_12ep.pth"
},
"dino/dino-swin/dino_swin_large_384_4scale_36ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_large_384_4scale_36ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dino_swin_large_384_4scale_36ep.pth"
},
"dino/dino-swin/dino_swin_large_384_5scale_36ep": {
"configs": "projects/dino/configs/dino-swin/dino_swin_large_384_5scale_36ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_swin_large_384_5scale_36ep.pth"
},
# Pretrained DINO with FocalNet Backbone
"dino/dino-swin/dino_focalnet_large_lrf_384_4scale_12ep": {
"configs": "projects/dino/configs/dino-focal/dino_focalnet_large_lrf_384_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_focal_large_lrf_384_4scale_12ep.pth"
},
"dino/dino-swin/dino_focalnet_large_lrf_384_fl4_4scale_12ep": {
"configs": "projects/dino/configs/dino-focal/dino_focalnet_large_lrf_384_fl4_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_focal_large_lrf_384_4scale_12ep.pth"
},
"dino/dino-swin/dino_focalnet_large_lrf_384_fl4_5scale_12ep": {
"configs": "projects/dino/configs/dino-focal/dino_focalnet_large_lrf_384_fl4_5scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_focalnet_large_lrf_384_fl4_5scale_12ep.pth"
},
# Pretrained DINO with ViTDet Backbone
"dino/dino-vitdet/dino_vitdet_base_4scale_12ep": {
"configs": "projects/dino/configs/dino-vitdet/dino_vitdet_base_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_4scale_12ep.pth"
},
"dino/dino-vitdet/dino_vitdet_base_4scale_50ep": {
"configs": "projects/dino/configs/dino-vitdet/dino_vitdet_base_4scale_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_base_4scale_50ep.pth"
},
"dino/dino-vitdet/dino_vitdet_large_4scale_12ep": {
"configs": "projects/dino/configs/dino-vitdet/dino_vitdet_large_4scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_large_4scale_12ep.pth"
},
"dino/dino-vitdet/dino_vitdet_large_4scale_50ep": {
"configs": "projects/dino/configs/dino-vitdet/dino_vitdet_large_4scale_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_large_4scale_50ep.pth"
},
# H-Deformable-DETR
"h_deformable_detr/h_deformable_detr_r50_two_stage_12ep": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_r50_two_stage_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/h_deformable_detr_r50_two_stage_12ep_modified_train_net.pth"
},
"h_deformable_detr/h_deformable_detr_r50_two_stage_12ep(converted)": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_r50_two_stage_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth"
},
"h_deformable_detr/h_deformable_detr_r50_two_stage_36ep": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_r50_two_stage_36ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth"
},
"h_deformable_detr/h_deformable_detr_swin_tiny_two_stage_12ep": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_tiny_two_stage_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth"
},
"h_deformable_detr/h_deformable_detr_swin_tiny_two_stage_36ep": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_tiny_two_stage_36ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth"
},
"h_deformable_detr/h_deformable_detr_swin_large_two_stage_12ep": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_large_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth"
},
"h_deformable_detr/h_deformable_detr_swin_large_two_stage_36ep": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_36ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/drop_path0.5_swin_large_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth"
},
"h_deformable_detr/h_deformable_detr_swin_large_two_stage_12ep_900queries": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_12ep_900queries.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth"
},
"h_deformable_detr/h_deformable_detr_swin_large_two_stage_36ep_900queries": {
"configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_36ep_900queries.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/drop_path0.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth"
},
# DETA
"deta/improved_deformable_detr_baseline_50ep": {
"configs": "projects/deta/configs/improved_deformable_detr_baseline_50ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_deta_improved_deformable_baseline.pth"
},
"deta/deta_r50_5scale_12ep_bs8": {
"configs": "projects/deta/configs/deta_r50_5scale_12ep_bs8.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/deta_r50_5scale_12ep_bs8.pth"
},
"deta/deta_r50_5scale_12ep": {
"configs": "projects/deta/configs/deta_r50_5scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/deta_r50_5scale_12ep_hacked_trainer.pth"
},
"deta/deta_r50_5scale_no_frozen_backbone": {
"configs": "projects/deta/configs/deta_r50_5scale_no_frozen_backbone.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/deta_r50_5scale_12ep_no_freeze_backbone.pth"
},
"deta/deta_r50_5scale_12ep(converted)": {
"configs": "projects/deta/configs/deta_r50_5scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_deta_r50_5scale_12ep.pth"
},
"deta/DETA-Swin-Large-finetune (converted)": {
"configs": "projects/deta/configs/deta_r50_5scale_12ep.py",
"ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_deta_swin_o365_finetune.pth"
},
}
def setup(args):
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
return cfg
def get_parser():
parser = argparse.ArgumentParser(description="detrex demo for visualizing customized inputs")
parser.add_argument(
"--config-file",
default="projects/dino/configs/dino_r50_4scale_12ep.py",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.")
parser.add_argument("--video-input", help="Path to video file.")
parser.add_argument(
"--input",
nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--min_size_test",
type=int,
default=800,
help="Size of the smallest side of the image during testing. Set to zero to disable resize in testing.",
)
parser.add_argument(
"--max_size_test",
type=float,
default=1333,
help="Maximum size of the side of the image during testing.",
)
parser.add_argument(
"--img_format",
type=str,
default="RGB",
help="The format of the loading images.",
)
parser.add_argument(
"--metadata_dataset",
type=str,
default="coco_2017_val",
help="The metadata infomation to be used. Default to COCO val metadata.",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser
def test_opencv_video_format(codec, file_ext):
with tempfile.TemporaryDirectory(prefix="video_format_test") as dir:
filename = os.path.join(dir, "test_file" + file_ext)
writer = cv2.VideoWriter(
filename=filename,
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=float(30),
frameSize=(10, 10),
isColor=True,
)
[writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)]
writer.release()
if os.path.isfile(filename):
return True
return False
def download_ckpts_and_image(ckpts):
print("ckpts:", ckpts)
torch.hub.download_url_to_file(ckpts, "dino_deitsmall16_pretrain.pth")
def run_detection(input_file, output_file, model_name, input_confidence, device):
configs = detrex_model_list[model_name]["configs"]
ckpts = detrex_model_list[model_name]["ckpts"]
mp.set_start_method("spawn", force=True)
args = get_parser().parse_args([
"--config-file", configs,
"--input", input_file,
"--output", output_file,
"--confidence-threshold", str(input_confidence),
"--opts", "train.init_checkpoint=" + ckpts
])
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup(args)
cfg.model.device = device
cfg.train.device = device
model = instantiate(cfg.model)
model.to(cfg.train.device)
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.train.init_checkpoint)
model.eval()
demo = VisualizationDemo(
model=model,
min_size_test=args.min_size_test,
max_size_test=args.max_size_test,
img_format=args.img_format,
metadata_dataset=args.metadata_dataset,
)
if args.input:
if len(args.input) == 1:
args.input = glob.glob(os.path.expanduser(args.input[0]))
assert args.input, "The input path(s) was not found"
for path in tqdm.tqdm(args.input, disable=not args.output):
# use PIL, to be consistent with evaluation
img = read_image(path, format="BGR")
start_time = time.time()
predictions, visualized_output = demo.run_on_image(img, args.confidence_threshold)
logger.info(
"{}: {} in {:.2f}s".format(
path,
"detected {} instances".format(len(predictions["instances"]))
if "instances" in predictions
else "finished",
time.time() - start_time,
)
)
if args.output:
if os.path.isdir(args.output):
assert os.path.isdir(args.output), args.output
out_filename = os.path.join(args.output, os.path.basename(path))
else:
assert len(args.input) == 1, "Please specify a directory with args.output"
out_filename = args.output
visualized_output.save(out_filename)
def download_test_img():
import shutil
torch.hub.download_url_to_file(
'https://github.com/isLinXu/issues/files/12658779/projects.zip',
'projects.zip')
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/268517006-d8d4d3b3-964a-4f4d-8458-18c7eb75a4f2.jpg',
'000000502136.jpg')
shutil.unpack_archive('projects.zip', './', 'zip')
def detect_image(input_image, model_name, input_confidence, device):
input_dir = "input.jpg"
input_image.save(input_dir)
output_image = "output.jpg"
run_detection(input_dir, output_image, model_name, input_confidence, device)
return output_image
if __name__ == '__main__':
input_image = gr.inputs.Image(type='pil', label="Input Image")
input_model_name = gr.inputs.Dropdown(list(detrex_model_list.keys()), label="Model Name", default="dab_detr/dab_detr_r50_50ep")
input_confidence = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.25, label="Confidence Threshold")
input_device = gr.inputs.Radio(["cpu", "cuda"], label="Device", default="cpu")
output_image = gr.outputs.Image(type='pil', label="Output Image")
download_test_img()
examples = [["000000502136.jpg", "dab_detr/dab_detr_r50_50ep", 0.25, "cpu"]]
title = "🦖detrex: Benchmarking Detection Transformers web demo"
description = "<div align='center'><img src='https://raw.githubusercontent.com/IDEA-Research/detrex/main/assets/logo_2.png' width='250''/><div>" \
"<p style='text-align: center'><a href='https://github.com/IDEA-Research/detrex'>detrex</a> detrex detrex 是一个开源工具箱,提供最先进的基于 Transformer 的检测算法。它建立在Detectron2之上,其模块设计部分借鉴了MMDetection和DETR。非常感谢他们组织良好的代码。主分支适用于Pytorch 1.10+或更高版本(我们推荐Pytorch 1.12)。" \
"detrex is a research platform for DETR-based object detection, segmentation, pose estimation and other visual recognition tasks.</p>"
article = "<p style='text-align: center'><a href='https://github.com/IDEA-Research/detrex'>detrex</a></p>" \
"<p style='text-align: center'><a href='https://github.com/isLinXu'>gradio build by gatilin</a></a></p>"
image_interface = gr.Interface(detect_image,
inputs=[input_image, input_model_name, input_confidence, input_device],
outputs=output_image,examples=examples,
title=title, article=article, description=description)
image_interface.launch()
|