File size: 10,334 Bytes
3c413eb
 
 
 
 
 
 
 
c9810d9
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
f2214be
 
3c413eb
 
 
 
 
bf2198c
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039cf73
ec6bf8d
3c413eb
 
 
 
 
 
 
 
 
 
 
 
c9810d9
 
a893118
 
c9810d9
 
 
f2214be
 
c9810d9
 
 
 
 
 
 
de7fe41
 
 
 
96e21ac
 
 
 
f2214be
1f29852
 
 
 
 
 
 
 
f2214be
 
97292af
f2214be
97292af
de7fe41
 
 
 
c9810d9
4d4d353
 
 
c9810d9
 
 
292a35c
c9810d9
3c413eb
c9810d9
3c413eb
c9810d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c413eb
c9810d9
 
 
 
 
 
 
 
3c413eb
c9810d9
 
 
 
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4725d44
6b71bd2
c9810d9
3c413eb
 
 
c9810d9
3c413eb
 
bf2198c
 
 
3c413eb
 
 
 
 
 
 
 
c6a0d24
4048622
d0bb262
4048622
c6a0d24
 
 
 
 
3c413eb
 
 
bf2198c
3c413eb
c6a0d24
3c413eb
039cf73
7e429a8
3c413eb
 
 
 
 
 
 
 
 
 
4048622
3c413eb
 
 
 
 
 
 
 
 
 
 
4048622
7e429a8
c6a0d24
51fa25e
 
3bef0e5
3c413eb
4048622
3fff89b
 
292a35c
 
9fceef7
 
7e429a8
292a35c
 
7e429a8
 
3c413eb
 
 
 
039cf73
3c413eb
 
3d13e8e
16c3b9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
from ultralyticsplus import YOLO, render_result

import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    # print("Labels " + str(labels))

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def detect_objects(model_name,url_input,image_input,threshold):
    

    if 'yolov8' in model_name:
        # Working on getting this to work, another approach
        # https://docs.ultralytics.com/modes/predict/#key-features-of-predict-mode 

        model = YOLO(model_name)
        # set model parameters
        model.overrides['conf'] = 0.15  # NMS confidence threshold
        model.overrides['iou'] = 0.05  # NMS IoU threshold             https://www.google.com/search?client=firefox-b-1-d&q=intersection+over+union+meaning
        model.overrides['agnostic_nms'] = False  # NMS class-agnostic
        model.overrides['max_det'] = 1000  # maximum number of detections per image

        results = model.predict(image_input)

        render = render_result(model=model, image=image_input, result=results[0])

        final_str = ""
        final_str_abv = ""
        final_str_else = ""

        for result in results:
            boxes = result.boxes.cpu().numpy()
            for i, box in enumerate(boxes):
                # r = box.xyxy[0].astype(int)
                coordinates = box.xyxy[0].astype(int)
                try:
                    label = YOLOV8_LABELS[int(box.cls)]
                except:
                    label = "ERROR"
                try:
                    confi = float(box.conf)
                except:
                    confi = 0.0
                # final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n"
                if confi >= threshold:
                    final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
                else:
                    final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"

        final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else

        return render, final_str
    else:
        
        #Extract model and feature extractor
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
        if 'detr' in model_name:
        
            model = DetrForObjectDetection.from_pretrained(model_name)

        elif 'yolos' in model_name:
        
            model = YolosForObjectDetection.from_pretrained(model_name)
    
        tb_label = ""
        if validators.url(url_input):
            image = Image.open(requests.get(url_input, stream=True).raw)
            tb_label = "Confidence Values URL"
            
        elif image_input:
            image = image_input
            tb_label = "Confidence Values Upload"
        
        #Make prediction
        processed_output_list = make_prediction(image, feature_extractor, model)
        print("After make_prediction" + str(processed_output_list))
        processed_outputs = processed_output_list[0]
        
        #Visualize prediction
        viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
        
        # return [viz_img, processed_outputs]
        # print(type(viz_img))
    
        final_str_abv = ""
        final_str_else = ""
        for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True):
            box = [round(i, 2) for i in box.tolist()]
            if score.item() >= threshold:
                final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
            else:
                final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
    
        # https://docs.python.org/3/library/string.html#format-examples
        final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
            
        return viz_img, final_str
        
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0])


title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)  
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)  
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
- [facebook/detr-resnet-101-dc5](https://huggingface.co/facebook/detr-resnet-101-dc5)
- [hustvl/yolos-small-300](https://huggingface.co/hustvl/yolos-small-300)
- [mshamrai/yolov8x-visdrone](https://huggingface.co/mshamrai/yolov8x-visdrone)

"""

models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','facebook/detr-resnet-101-dc5', 'hustvl/yolos-small-300', 'mshamrai/yolov8x-visdrone']
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]

# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)


def changing(inVal, outBox):
    if inVal:
        return [gr.Button('Detect', interactive=True), gr.Button('Detect', interactive=True)]
    else:
        outBox.value = "Select Dropdown"
        


with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    # gr.Markdown(twitter_link)
    options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
    
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')

    
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                img_output_from_url = gr.Image(shape=(650,650))
                
            with gr.Row():
                example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
            
            url_but = gr.Button('Detect', interactive=False)
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(shape=(650,650))
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
                
            img_but = gr.Button('Detect', interactive=False)

    
    # output_text1 = gr.outputs.Textbox(label="Confidence Values")
    output_text1 = gr.components.Textbox(label="Confidence Values")
    # https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
    
    options.change(fn=changing, inputs=[options, output_text1], outputs=[img_but, url_but])

    
    url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
    img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
    # url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
    # img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
    
    # url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
    # img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)

    
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
    

    # gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")

    
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True)