File size: 7,553 Bytes
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2198c
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039cf73
ec6bf8d
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292a35c
 
3c413eb
 
292a35c
3c413eb
 
 
292a35c
3c413eb
 
bf2198c
ec6bf8d
5b2054a
3c413eb
 
 
 
9fceef7
292a35c
3bef0e5
b3b8437
 
b57b81d
3bef0e5
b3b8437
 
 
 
3bef0e5
063f8ab
 
3bef0e5
 
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4725d44
3c413eb
 
 
4725d44
3c413eb
 
bf2198c
 
 
3c413eb
 
 
 
 
 
 
 
 
 
 
bf2198c
3c413eb
 
039cf73
7e429a8
3c413eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e429a8
51fa25e
 
3bef0e5
3c413eb
292a35c
 
9fceef7
 
7e429a8
292a35c
 
7e429a8
 
3c413eb
 
 
 
039cf73
3c413eb
 
3d13e8e
16c3b9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection

import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    # print("Labels " + str(labels))

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def detect_objects(model_name,url_input,image_input,threshold):
    
    #Extract model and feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    
    if 'detr' in model_name:
        
        model = DetrForObjectDetection.from_pretrained(model_name)
        
    elif 'yolos' in model_name:
    
        model = YolosForObjectDetection.from_pretrained(model_name)

    tb_label = ""
    if validators.url(url_input):
        image = Image.open(requests.get(url_input, stream=True).raw)
        tb_label = "Confidence Values URL"
        
    elif image_input:
        image = image_input
        tb_label = "Confidence Values Upload"
    
    #Make prediction
    processed_output_list = make_prediction(image, feature_extractor, model)
    print("After make_prediction" + str(processed_output_list))
    processed_outputs = processed_output_list[0]
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
    
    # return [viz_img, processed_outputs]
    # print(type(viz_img))

    final_str_abv = ""
    final_str_else = ""
    for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True):
        box = [round(i, 2) for i in box.tolist()]
        if score.item() >= threshold:
            final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
        else:
            final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"

    # https://docs.python.org/3/library/string.html#format-examples
    final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
        
    return viz_img, final_str
        
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0])


title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)  
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)  
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
- [facebook/detr-resnet-101-dc5](https://huggingface.co/facebook/detr-resnet-101-dc5)

"""

models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','facebook/detr-resnet-101-dc5']
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]

# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)

with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    # gr.Markdown(twitter_link)
    options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')

    
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                img_output_from_url = gr.Image(shape=(650,650))
                
            with gr.Row():
                example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
            
            url_but = gr.Button('Detect')
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(shape=(650,650))
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
                
            img_but = gr.Button('Detect')

    # output_text1 = gr.outputs.Textbox(label="Confidence Values")
    output_text1 = gr.components.Textbox(label="Confidence Values")
    # https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
    
    url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
    img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
    # url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
    # img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
    
    # url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
    # img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)

    
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
    

    # gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")

    
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True)