File size: 3,899 Bytes
dde4b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
## Alternative movie poster generator



import streamlit as st
import pandas as pd
import numpy as np
import json
import requests
import os

from streamlit import session_state as session
from datetime import time, datetime
from zipfile import ZipFile
from kaggle.api.kaggle_api_extended import KaggleApi
from sentence_transformers import SentenceTransformer
from diffusers import DiffusionPipeline


###############################
## ------- FUNCTIONS ------- ##
###############################

#@st.cache(persist=True, show_spinner=False, suppress_st_warning=True)
@st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True)
def load_dataset():
    """
    Load Dataset from Kaggle
    -return: dataframe containing dataset
    """
    # Downloading Movies dataset
    api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv')

    # Extract data
    zf = ZipFile('movies_metadata.csv.zip')
    zf.extractall() 
    zf.close()

    # Create dataframe
    data = pd.read_csv('movies_metadata.csv', low_memory=False)

    return data

@st.cache
def load_model():
    #return DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
    return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")


def query_summarization(text):
    """
    Get summarization from HuggingFace Inference API
    -param text: text to be summarized
    -return: summarized text
    """
    API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
    headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
    payload = {"inputs": f"{text}",}
    
    response = requests.request("POST", API_URL, headers=headers, json=payload).json()
    return response[0].get('summary_text')

def generate_poster(movie_data):
    """
    Function for recommending movies
    -param movie_data: metadata of movie selected by user
    -return: image of generated alternative poster
    """

    # Get summarization of movie synopsis
    with st.spinner("Please wait while the synopsis is being summarized..."):
        synopsis_sum = query_summarization(movie_data.overview.values[0])
    st.text(synopsis_sum)

    # Get image based on synopsis
    pipeline = load_model()
    #pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-2")

    #image = pipe(prompt).images[0]
    #st.image(image, caption=movie_data.title)

    return None #poster_image


###############################
## --- CONNECT TO KAGGLE --- ##
###############################

# Authenticate Kaggle account
os.environ['KAGGLE_USERNAME'] = st.secrets['username']
os.environ['KAGGLE_KEY'] = st.secrets['key']


api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
with open('/home/appuser/.kaggle/kaggle.json', 'w') as file:
    json.dump(api_token, file)


# Activate Kaggle API

try:
    api = KaggleApi()
    api.authenticate()
except:
    with open('/home/appuser/.kaggle/kaggle.json', 'w') as file:
        json.dump(api_token, file)
    api = KaggleApi()
    api.authenticate() 



###############################
## --------- MAIN ---------- ##
###############################

image = None

# Create dataset
data = load_dataset()


st.title("""
Alternative Movie Poster Generator :film_frames:
This is a movie poster generator based on movie's synopsis :sunglasses:
Just select the title of a movie to generate an alternative poster.
 """)

st.text("")
st.text("")
st.text("")
st.text("")

session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title)

st.text("")
st.text("")

buffer1, col1, buffer2 = st.columns([1.3, 1, 1])

is_clicked = col1.button(label="Generate poster!")


if is_clicked:
    image = generate_poster(data[data.title==session.selected_movie])

st.text("")
st.text("")
st.text("")
st.text("")

#if data is not None:
#    st.table(data)