Spaces:
Build error
Build error
File size: 30,843 Bytes
338ce5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import gradio as gr
import google.generativeai as genai
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
import requests
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from moviepy.editor import (ImageClip, AudioFileClip, concatenate_audioclips,
concatenate_videoclips, CompositeVideoClip, TextClip,
VideoFileClip, vfx) # Added VideoFileClip and vfx
from googleapiclient.discovery import build
import yt_dlp
import os
import re
import time
import shutil
import random
from dotenv import load_dotenv
from urllib.parse import quote_plus
# --- CONFIGURATION ---
load_dotenv() # Load environment variables from .env file
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
YOUTUBE_API_KEY = os.getenv("YOUTUBE_API_KEY")
if not GEMINI_API_KEY:
print("WARNING: GEMINI_API_KEY not found in .env file or environment.")
if not YOUTUBE_API_KEY:
print("WARNING: YOUTUBE_API_KEY not found in .env file or environment.")
TEMP_DIR = "temp_files_youtube_creator" # Unique temp dir name
SPEAKER_DESCRIPTION_FOR_TTS = "A clear, engaging, and expressive male voice with a standard American accent, speaking at a moderate pace. The recording is of high quality with minimal background noise."
IMAGES_PER_SEGMENT = 1
VIDEO_WIDTH = 1280 # Adjusted for faster processing, 1920x1080 is also good
VIDEO_HEIGHT = 720
VIDEO_FPS = 24
MAX_SCRIPT_SEGMENTS_FOR_DEMO = 5 # To keep processing time reasonable for Gradio
# --- END CONFIGURATION ---
# --- Initialize Models (Global for efficiency if Gradio doesn't reload everything) ---
gemini_model = None
parler_model = None
parler_tokenizer = None
parler_description_tokenizer = None
youtube_service = None
ua = UserAgent()
def initialize_models():
global gemini_model, parler_model, parler_tokenizer, parler_description_tokenizer, youtube_service
if GEMINI_API_KEY and gemini_model is None:
try:
genai.configure(api_key=GEMINI_API_KEY)
gemini_model = genai.GenerativeModel("gemini-1.5-flash-latest") # Using latest flash
print("Gemini model initialized.")
except Exception as e:
print(f"Error initializing Gemini model: {e}")
gemini_model = None # Ensure it's None if init fails
if parler_model is None:
try:
print("Loading Parler-TTS models...")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
parler_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1.1").to(device)
parler_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1.1")
parler_description_tokenizer = AutoTokenizer.from_pretrained(parler_model.config.text_encoder._name_or_path)
print("Parler-TTS models loaded.")
except Exception as e:
print(f"Error initializing Parler-TTS models: {e}")
parler_model = None
if YOUTUBE_API_KEY and youtube_service is None:
try:
youtube_service = build('youtube', 'v3', developerKey=YOUTUBE_API_KEY)
print("YouTube service initialized.")
except Exception as e:
print(f"Error initializing YouTube service: {e}")
youtube_service = None
# Call initialization at the start
initialize_models()
# --- Prompts ---
def get_idea_generation_prompt_template(niche):
return f"""
Generate 5 diverse and highly engaging YouTube video ideas for the niche: '{niche}'.
For each idea, provide:
1. **Title:** A very catchy, short, and SEO-friendly Title (max 10 words).
2. **Description:** A compelling 1-2 sentence hook.
3. **Keywords:** 3-5 specific keywords for YouTube search.
Format each idea clearly, separated by '---'.
Example:
Title: Zen Masters' Morning Secrets
Description: Unlock ancient Zen rituals for a peaceful and productive morning. Transform your day before it even begins!
Keywords: zen, morning routine, mindfulness, productivity, meditation
---
"""
def get_viral_selection_prompt_template(ideas_text):
return f"""
Analyze the following YouTube video ideas. Select the ONE idea with the highest potential for virality and broad appeal within its niche.
Consider factors like curiosity gap, emotional impact, and shareability.
Provide ONLY the Title of the selected idea. No extra text.
Video Ideas:
{ideas_text}
Most Viral Title:
"""
def get_script_generation_prompt_template(title, description, target_duration_seconds=60): # Shorter for demo
return f"""
Create a captivating YouTube video script for:
Title: "{title}"
Description: "{description}"
The script should be for a video of approximately {target_duration_seconds} seconds.
Break it into distinct scenes/segments. For each scene:
1. **VOICEOVER:** (The text to be spoken)
2. **IMAGE_KEYWORDS:** [keyword1, keyword2, visual detail] (Suggest 2-3 descriptive keywords for Unsplash image search for this scene)
The voiceover should be conversational, engaging, and clear.
Include an intro, main points, and a concluding call to action (e.g., subscribe).
Each voiceover part should be a few sentences long, suitable for a single visual scene.
Example Scene:
VOICEOVER: Imagine a world where time slows down, and every moment is an opportunity for peace. [serene landscape, misty mountains, calm lake]
---
Script:
"""
# --- Gemini Handler ---
def query_gemini(prompt_text):
if not gemini_model:
return "Error: Gemini model not initialized. Check API Key."
try:
response = gemini_model.generate_content(prompt_text)
return response.text
except Exception as e:
return f"Error calling Gemini API: {e}"
def parse_generated_ideas(text):
ideas = []
# Improved regex to handle variations and ensure all parts are captured
idea_blocks = re.split(r'\n\s*---\s*\n', text.strip())
for block in idea_blocks:
if not block.strip():
continue
title_match = re.search(r"Title:\s*(.*)", block, re.IGNORECASE)
desc_match = re.search(r"Description:\s*(.*)", block, re.IGNORECASE)
keywords_match = re.search(r"Keywords:\s*(.*)", block, re.IGNORECASE)
if title_match and desc_match:
title = title_match.group(1).strip()
description = desc_match.group(1).strip()
keywords_raw = keywords_match.group(1).strip() if keywords_match else ""
keywords = [k.strip() for k in keywords_raw.split(',') if k.strip()]
ideas.append({"title": title, "description": description, "keywords": keywords})
return ideas
def parse_generated_script(text):
segments = []
# Regex to capture VOICEOVER and IMAGE_KEYWORDS blocks
pattern = re.compile(r"VOICEOVER:\s*(.*?)\s*IMAGE_KEYWORDS:\s*\[(.*?)\]", re.DOTALL | re.IGNORECASE)
matches = pattern.findall(text)
for vo, kw_str in matches:
keywords = [k.strip() for k in kw_str.split(',') if k.strip()]
segments.append({
"voiceover": vo.strip(),
"image_keywords": keywords if keywords else ["general background"] # Default
})
if not segments and "VOICEOVER:" in text: # Fallback if structure is slightly off
parts = text.split("---")
for part in parts:
vo_match = re.search(r"VOICEOVER:\s*(.*)", part, re.DOTALL | re.IGNORECASE)
kw_match = re.search(r"IMAGE_KEYWORDS:\s*\[(.*?)\]", part, re.DOTALL | re.IGNORECASE)
if vo_match:
vo = vo_match.group(1).strip()
kws = []
if kw_match:
kws = [k.strip() for k in kw_match.group(1).split(',') if k.strip()]
segments.append({"voiceover": vo, "image_keywords": kws if kws else ["general background"]})
return segments[:MAX_SCRIPT_SEGMENTS_FOR_DEMO] # Limit for demo
# --- TTS Handler ---
def text_to_speech(text_prompt, speaker_desc, output_filename="segment_audio.wav"):
if not parler_model:
return "Error: Parler-TTS model not initialized."
device = "cuda:0" if torch.cuda.is_available() else "cpu"
try:
input_ids = parler_description_tokenizer(speaker_desc, return_tensors="pt").input_ids.to(device)
prompt_input_ids = parler_tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
generation = parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids, do_sample=True, temperature=0.7, repetition_penalty=1.1) # Added some generation params
audio_arr = generation.cpu().numpy().squeeze()
full_output_path = os.path.join(TEMP_DIR, "audio_segments", output_filename)
sf.write(full_output_path, audio_arr, parler_model.config.sampling_rate)
return full_output_path
except Exception as e:
print(f"Parler-TTS Error for '{text_prompt[:30]}...': {e}")
return None
# --- Image Scraper (Improved Unsplash Scraper) ---
def fetch_unsplash_images(keywords, num_images=1):
if not keywords:
keywords = ["video background"] # More generic default
query = "+".join(quote_plus(k) for k in keywords) # URL encode keywords
# Try more specific search, e.g., landscape or portrait based on video aspect ratio
# For now, general search
search_url = f"https://unsplash.com/s/photos/{query}"
image_urls = []
downloaded_image_paths = []
headers = {'User-Agent': ua.random, 'Accept-Language': 'en-US,en;q=0.5'}
try:
print(f"Searching Unsplash: {search_url}")
response = requests.get(search_url, headers=headers, timeout=15)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Unsplash structure is dynamic. This is a common pattern.
# Look for figure tags, then img tags within them with srcset
# Or links that contain '/photos/'
# Attempt 1: Figure tags with img having srcset (often high quality)
figures = soup.find_all('figure', itemprop="image")
for fig in figures:
img_tag = fig.find('img', srcset=True)
if img_tag:
# Get the highest resolution from srcset (often the last one)
# Example srcset: url1 300w, url2 600w, url3 1000w
srcset_parts = img_tag['srcset'].split(',')
best_url = srcset_parts[-1].strip().split(' ')[0]
if best_url not in image_urls:
image_urls.append(best_url)
if len(image_urls) >= num_images * 2: # Fetch a bit more to choose from
break
# Attempt 2: Links to photo pages (if first attempt fails or yields few)
if len(image_urls) < num_images:
links = soup.find_all('a', href=True)
for link in links:
href = link['href']
if href.startswith('/photos/') and 'plus.unsplash.com' not in href: # Avoid premium
photo_id = href.split('/')[-1].split('?')[0]
# Construct a potential direct image URL (might not always work)
# Unsplash often uses source.unsplash.com for direct links by ID
direct_img_url = f"https://source.unsplash.com/{photo_id}/{VIDEO_WIDTH}x{VIDEO_HEIGHT}"
if direct_img_url not in image_urls:
image_urls.append(direct_img_url)
if len(image_urls) >= num_images * 2:
break
# Attempt 3: Generic placeholder if all else fails
if not image_urls:
print("Using placeholder image as Unsplash scraping yielded no results.")
for i in range(num_images):
downloaded_image_paths.append(get_placeholder_images(keywords, 1)[0]) # Use the placeholder fn
return downloaded_image_paths
print(f"Found {len(image_urls)} potential image URLs for '{query}'. Downloading {num_images}...")
os.makedirs(os.path.join(TEMP_DIR, "images"), exist_ok=True)
selected_urls = random.sample(image_urls, min(num_images, len(image_urls)))
for i, img_url in enumerate(selected_urls):
try:
time.sleep(random.uniform(0.5, 1.5)) # Respectful delay
img_response = requests.get(img_url, headers=headers, timeout=10, stream=True)
img_response.raise_for_status()
# Sanitize filename from keywords
safe_keywords = "".join(c if c.isalnum() else "_" for c in "_".join(keywords))
filename = f"unsplash_{safe_keywords}_{i}.jpg"
filepath = os.path.join(TEMP_DIR, "images", filename)
with open(filepath, 'wb') as f:
for chunk in img_response.iter_content(chunk_size=8192):
f.write(chunk)
downloaded_image_paths.append(filepath)
print(f"Downloaded: {filepath}")
except Exception as e_img:
print(f"Failed to download image {img_url}: {e_img}")
except requests.exceptions.RequestException as e_req:
print(f"Request error scraping Unsplash for '{query}': {e_req}")
except Exception as e_gen:
print(f"General error scraping Unsplash: {e_gen}")
# If not enough images downloaded, fill with placeholders
while len(downloaded_image_paths) < num_images:
print("Not enough images from Unsplash, adding placeholder.")
placeholder = get_placeholder_images(["generic"], 1)
if placeholder:
downloaded_image_paths.append(placeholder[0])
else: # Absolute fallback
break
return downloaded_image_paths
# --- Music Handler ---
def find_and_download_music(keywords, output_dir=TEMP_DIR):
if not youtube_service:
return "Error: YouTube service not initialized. Check API Key.", None
search_query = " ".join(keywords) + " copyright free instrumental background music"
try:
search_response = youtube_service.search().list(
q=search_query,
part='id,snippet',
maxResults=5, # Get a few options
type='video',
videoLicense='creativeCommon'
).execute()
if not search_response.get('items'):
return "No Creative Commons music found on YouTube.", None
# Simple selection: pick the first one. Could add logic to pick based on duration, views etc.
video = search_response['items'][0]
video_id = video['id']['videoId']
video_title = video['snippet']['title']
status_msg = f"Found music: '{video_title}'. Downloading..."
print(status_msg)
audio_path = os.path.join(output_dir, "background_music.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': audio_path,
'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}],
'quiet': True, 'no_warnings': True
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([f"https://www.youtube.com/watch?v={video_id}"])
return f"{status_msg} Downloaded to {audio_path}", audio_path
except Exception as e:
return f"Error fetching/downloading music: {e}", None
# --- Video Processor ---
def create_video(image_paths, voiceover_audio_paths, script_segments, background_music_path=None):
video_clips_list = []
min_segment_duration = 2.0 # Minimum duration for a scene
if not image_paths or not voiceover_audio_paths or len(image_paths) != len(voiceover_audio_paths) or len(voiceover_audio_paths) != len(script_segments):
комплектация print(f"Warning: Mismatch in number of images ({len(image_paths)}), voiceovers ({len(voiceover_audio_paths)}), or script segments ({len(script_segments)}). Adjusting.")
# This needs careful handling. For demo, we'll try to proceed with minimum available.
num_segments = min(len(image_paths), len(voiceover_audio_paths), len(script_segments))
if num_segments == 0:
return "Error: Not enough assets to create video segments.", None
image_paths = image_paths[:num_segments]
voiceover_audio_paths = voiceover_audio_paths[:num_segments]
script_segments = script_segments[:num_segments]
for i in range(len(voiceover_audio_paths)):
img_path = image_paths[i]
vo_path = voiceover_audio_paths[i]
script_text = script_segments[i]['voiceover']
try:
audio_clip = AudioFileClip(vo_path)
# Ensure segment duration is at least min_segment_duration
segment_dur = max(audio_clip.duration, min_segment_duration)
# Image with Ken Burns effect (simple zoom and pan)
img = (ImageClip(img_path)
.set_duration(segment_dur)
.resize(height=VIDEO_HEIGHT) # Resize to fit height
.set_fps(VIDEO_FPS))
# Make image slightly larger for Ken Burns
img_zoomed = img.resize(1.2) # Zoom by 20%
# Pan from left to right (or other variations)
# img_animated = img_zoomed.set_position(lambda t: (-(img_zoomed.w - VIDEO_WIDTH) * (t / segment_dur), 'center'))
# Simpler: Crop to create a slight zoom/pan effect
img_animated = img_zoomed.fx(vfx.crop, width=VIDEO_WIDTH, height=VIDEO_HEIGHT, x_center=img_zoomed.w/2, y_center=img_zoomed.h/2)
# Subtitle styling (more polished)
txt = (TextClip(script_text, fontsize=30, color='yellow', font='Arial-Unicode-MS', # Try a font known for good char support
bg_color='rgba(0,0,0,0.5)', size=(VIDEO_WIDTH*0.9, None),
method='caption', align='South')
.set_duration(audio_clip.duration) # Sync with actual voiceover length
.set_start(0) # Start text when audio starts
.set_position(('center', 'bottom')))
video_segment = CompositeVideoClip([img_animated, txt], size=(VIDEO_WIDTH, VIDEO_HEIGHT)).set_audio(audio_clip)
video_clips_list.append(video_segment)
except Exception as e:
print(f"Error processing segment {i+1} with image {img_path} and audio {vo_path}: {e}")
continue # Skip problematic segment
if not video_clips_list:
return "Error: No video segments could be created.", None
final_vid = concatenate_videoclips(video_clips_list, method="compose", transition=VideoFileClip.crossfadein(0.5)) # Crossfade transition
if background_music_path and os.path.exists(background_music_path):
music = AudioFileClip(background_music_path).volumex(0.15) # Lower volume
if music.duration > final_vid.duration:
music = music.subclip(0, final_vid.duration)
# Ensure final_vid has an audio track before composing
if final_vid.audio is None and video_clips_list and video_clips_list[0].audio:
# If concatenate_videoclips dropped audio, re-add from first segment (or combine all)
# This can happen if first clip has no audio. Better to combine all VOs first.
combined_vo = concatenate_audioclips([vc.audio for vc in video_clips_list if vc.audio])
final_vid = final_vid.set_audio(combined_vo)
if final_vid.audio: # Check again
final_audio = CompositeAudioClip([final_vid.audio, music])
final_vid = final_vid.set_audio(final_audio)
else:
print("Warning: Final video has no primary audio track to mix music with.")
final_vid = final_vid.set_audio(music) # Use only music if no VOs
output_filepath = os.path.join(TEMP_DIR, "final_output_video.mp4")
try:
final_vid.write_videofile(output_filepath, codec="libx264", audio_codec="aac", fps=VIDEO_FPS, threads=4, preset='medium') # Added threads and preset
return f"Video created: {output_filepath}", output_filepath
except Exception as e:
return f"Error writing final video: {e}", None
finally:
# Close all clips
for clip in video_clips_list:
if clip.audio: clip.audio.close()
clip.close()
if 'music' in locals() and music.reader: music.close()
if final_vid.audio: final_vid.audio.close()
if final_vid.reader: final_vid.close()
# --- Main Gradio Function ---
def generate_youtube_video(niche_input, progress=gr.Progress(track_tqdm=True)):
if not GEMINI_API_KEY or not YOUTUBE_API_KEY or not parler_model or not youtube_service or not gemini_model:
missing = []
if not GEMINI_API_KEY: missing.append("Gemini API Key")
if not YOUTUBE_API_KEY: missing.append("YouTube API Key")
if not parler_model: missing.append("Parler-TTS models")
if not youtube_service: missing.append("YouTube service")
if not gemini_model: missing.append("Gemini service")
return None, f"ERROR: Required services/API keys not initialized: {', '.join(missing)}. Please check your .env file and console logs."
cleanup_temp_files()
log_messages = ["Process Started...\n"]
progress(0.05, desc="Generating video ideas...")
log_messages.append("1. Generating Video Ideas...")
ideas_prompt = get_idea_generation_prompt_template(niche_input)
raw_ideas_text = query_gemini(ideas_prompt)
if "Error:" in raw_ideas_text:
log_messages.append(raw_ideas_text)
return None, "\n".join(log_messages)
parsed_ideas = parse_generated_ideas(raw_ideas_text)
if not parsed_ideas:
log_messages.append("Error: No ideas parsed from Gemini response.")
return None, "\n".join(log_messages)
log_messages.append(f"Generated {len(parsed_ideas)} ideas.")
# For UI, let's display the ideas (optional)
# log_messages.append("Ideas:\n" + "\n".join([f"- {i['title']}" for i in parsed_ideas]))
progress(0.15, desc="Selecting viral idea...")
log_messages.append("\n2. Selecting Most Viral Idea...")
ideas_for_selection_prompt = "\n---\n".join([f"Title: {i['title']}\nDescription: {i['description']}" for i in parsed_ideas])
selection_prompt = get_viral_selection_prompt_template(ideas_for_selection_prompt)
selected_title_raw = query_gemini(selection_prompt)
if "Error:" in selected_title_raw:
log_messages.append(f"Error selecting idea: {selected_title_raw}. Using first idea.")
chosen_idea = parsed_ideas[0]
else:
selected_title = selected_title_raw.replace("Most Viral Title:", "").strip()
chosen_idea = next((idea for idea in parsed_ideas if idea["title"].strip().lower() == selected_title.lower()), parsed_ideas[0])
log_messages.append(f"Chosen Idea: '{chosen_idea['title']}'")
progress(0.25, desc="Generating script...")
log_messages.append(f"\n3. Generating Script for '{chosen_idea['title']}'...")
script_prompt = get_script_generation_prompt_template(chosen_idea['title'], chosen_idea['description'])
raw_script_text = query_gemini(script_prompt)
if "Error:" in raw_script_text:
log_messages.append(raw_script_text)
химический return None, "\n".join(log_messages)
script_segments = parse_generated_script(raw_script_text)
if not script_segments:
log_messages.append("Error: No script segments parsed.")
return None, "\n".join(log_messages)
log_messages.append(f"Script generated with {len(script_segments)} segments (limited to {MAX_SCRIPT_SEGMENTS_FOR_DEMO} for demo).")
progress(0.40, desc="Generating voiceovers...")
log_messages.append("\n4. Generating Voiceovers...")
voiceover_paths = []
for i, segment in enumerate(progress.tqdm(script_segments, desc="TTS Progress")):
vo_text = segment['voiceover']
if not vo_text: continue # Skip if no voiceover text
audio_filename = f"segment_{i+1}_audio.wav"
path = text_to_speech(vo_text, SPEAKER_DESCRIPTION_FOR_TTS, audio_filename)
if path:
voiceover_paths.append(path)
log_messages.append(f" - Voiceover for segment {i+1} created.")
else:
log_messages.append(f" - Failed voiceover for segment {i+1}.")
if not voiceover_paths or len(voiceover_paths) < len(script_segments):
log_messages.append("Warning: Not all voiceovers could be generated.")
if not voiceover_paths:
return None, "\n".join(log_messages) # Critical failure if NO voiceovers
progress(0.60, desc="Fetching images...")
log_messages.append("\n5. Fetching Images...")
all_image_paths_for_video = []
for i, segment in enumerate(progress.tqdm(script_segments, desc="Image Fetching")):
keywords = segment['image_keywords']
if not keywords: keywords = [chosen_idea['title']] # Fallback to title
# Fetch one image per segment
img_path_list = fetch_unsplash_images(keywords, num_images=IMAGES_PER_SEGMENT)
if img_path_list:
all_image_paths_for_video.append(img_path_list[0]) # Take the first image found
log_messages.append(f" - Image for segment {i+1} using keywords '{', '.join(keywords)}' fetched: {os.path.basename(img_path_list[0])}")
else:
log_messages.append(f" - No image found for segment {i+1} with keywords '{', '.join(keywords)}'. Using placeholder.")
placeholder_img = get_placeholder_images(keywords,1) # Use the function that creates/downloads a placeholder
if placeholder_img:
all_image_paths_for_video.append(placeholder_img[0])
else: # Absolute fallback
log_messages.append(" - CRITICAL: Could not get even a placeholder image. Video might fail.")
# For robustness, ensure a default image exists if this happens
default_img_path = os.path.join(TEMP_DIR, "images", "default_img.jpg")
if not os.path.exists(default_img_path): # Create a dummy if it doesn't exist
try:
from PIL import Image
Image.new('RGB', (VIDEO_WIDTH, VIDEO_HEIGHT), color = 'black').save(default_img_path)
all_image_paths_for_video.append(default_img_path)
except ImportError:
log_messages.append("PIL/Pillow not installed, cannot create dummy image.")
return None, "\n".join(log_messages) # Can't proceed without images
else:
all_image_paths_for_video.append(default_img_path)
if len(all_image_paths_for_video) < len(voiceover_paths):
log_messages.append("Warning: Not enough images fetched for all voiceover segments. Video might be shorter or reuse images.")
# Pad with last image if necessary, or a default
while len(all_image_paths_for_video) < len(voiceover_paths) and all_image_paths_for_video:
all_image_paths_for_video.append(all_image_paths_for_video[-1])
if not all_image_paths_for_video: # Still no images
log_messages.append("Fatal Error: No images available for video creation.")
return None, "\n".join(log_messages)
progress(0.75, desc="Finding background music...")
log_messages.append("\n6. Finding Background Music...")
music_search_keywords = chosen_idea.get("keywords", []) + [niche_input, "cinematic", "calm"]
music_status, music_file_path = find_and_download_music(music_search_keywords)
log_messages.append(f" - {music_status}")
progress(0.85, desc="Assembling video...")
log_messages.append("\n7. Assembling Video...")
# Make sure number of images matches number of VOs for the video processor
# The video processor already has some logic, but let's be explicit here
final_images = all_image_paths_for_video[:len(voiceover_paths)]
video_status, final_video_path = create_video(final_images, voiceover_paths, script_segments, music_file_path)
log_messages.append(f" - {video_status}")
if not final_video_path:
return None, "\n".join(log_messages)
progress(1.0, desc="Process Complete!")
log_messages.append("\nProcess Complete! Video ready.")
return final_video_path, "\n".join(log_messages)
# --- Gradio UI ---
css = """
.gradio-container { font-family: 'Roboto', sans-serif; }
.gr-button { background-color: #FF7F50; color: white; border-radius: 8px; }
.gr-button:hover { background-color: #FF6347; }
footer {display: none !important;}
""" # Hide default Gradio footer
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange", secondary_hue="red"), css=css) as demo:
gr.Markdown(
"""
<div style="text-align: center;">
<img src="https://i.imgur.com/J20hQ9h.png" alt="RoboNuggets Logo" style="width:100px; height:auto; margin-bottom: 5px;">
<h1>AI YouTube Video Creator (R28 LongForm Style)</h1>
<p>Automate your YouTube content creation! Enter a niche, and let AI handle the rest.</p>
</div>
"""
)
with gr.Row():
niche_textbox = gr.Textbox(
label="Enter Video Niche or Specific Topic",
placeholder="e.g., 'The Philosophy of Stoicism for Modern Life', 'Beginner's Guide to Urban Gardening'",
value="The Stoic Lion: Finding Calm in Chaos" # Default value from video
)
create_button = gr.Button("✨ Create Video ✨", variant="primary")
with gr.Accordion("📊 Process Log & Output", open=True):
log_output = gr.Textbox(label="Log", lines=15, interactive=False, placeholder="Process updates will appear here...")
video_output = gr.Video(label="Generated Video")
create_button.click(
fn=generate_youtube_video,
inputs=[niche_textbox],
outputs=[video_output, log_output]
)
gr.Markdown(
"""
---
*Powered by RoboNuggets AI*
*(Note: This is a demo. Image scraping from Unsplash can be unreliable. Ensure API keys are set in .env)*
"""
)
if __name__ == "__main__":
# Ensure temp directory exists
os.makedirs(os.path.join(TEMP_DIR, "images"), exist_ok=True)
os.makedirs(os.path.join(TEMP_DIR, "audio_segments"), exist_ok=True)
print("Starting Gradio App...")
demo.launch(debug=True, share=False) # share=True for public link (use with caution and ngrok) |