File size: 8,189 Bytes
42cacb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
#
from transformers import Wav2Vec2FeatureExtractor
from transformers import AutoModel
import torch
from torch import nn
import torchaudio
import torchaudio.transforms as T
import logging

import json
import os
import re

import pandas as pd

import importlib 
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT")

from Prediction_Head.MTGGenre_head import MLPProberBase 
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py


logger = logging.getLogger("MERT-v1-95M-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
    "%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)



inputs = [
    gr.components.Audio(type="filepath", label="Add music audio file"), 
    gr.inputs.Audio(source="microphone", type="filepath"),
]
live_inputs = [
    gr.Audio(source="microphone",streaming=True, type="filepath"),
]

title = "One Model for All Music Understanding Tasks"
description = "An example of using the [MERT-v1-95M](https://huggingface.co/m-a-p/MERT-v1-95M) model as backbone to conduct multiple music understanding tasks with the universal represenation."
# article = "The tasks include EMO, GS, MTGInstrument, MTGGenre, MTGTop50, MTGMood, NSynthI, NSynthP, VocalSetS, VocalSetT. \n\n More models can be referred at the [map organization page](https://huggingface.co/m-a-p)."
with open('./README.md', 'r') as f:
    # skip the header
    header_count = 0
    for line in f:
        if '---' in line:
            header_count += 1
        if header_count >= 2:
            break
    # read the rest conent
    article = f.read()
    
audio_examples = [
    # ["input/example-1.wav"],
    # ["input/example-2.wav"],
]

df_init = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df = gr.DataFrame(value=df_init, label="Output Dataframe", row_count=(
    0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
# outputs = [gr.components.Textbox()]
outputs = transcription_df

df_init_live = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
transcription_df_live = gr.DataFrame(value=df_init_live, label="Output Dataframe", row_count=(
    0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate')
outputs_live = transcription_df_live

# Load the model and the corresponding preprocessor config
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v1-95M")
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v1-95M")

device = 'cuda' if torch.cuda.is_available() else 'cpu'

MERT_BEST_LAYER_IDX = {
    'EMO': 5,
    'GS': 8,
    'GTZAN': 7,
    'MTGGenre': 7,
    'MTGInstrument': 'all',
    'MTGMood': 6,
    'MTGTop50': 6,
    'MTT': 'all',
    'NSynthI': 6,
    'NSynthP': 1,
    'VocalSetS': 2,
    'VocalSetT': 9,
} 

MERT_BEST_LAYER_IDX = {
    'EMO': 5,
    'GS': 8,
    'GTZAN': 7,
    'MTGGenre': 7,
    'MTGInstrument': 'all',
    'MTGMood': 6,
    'MTGTop50': 6,
    'MTT': 'all',
    'NSynthI': 6,
    'NSynthP': 1,
    'VocalSetS': 2,
    'VocalSetT': 9,
} 
CLASSIFIERS = {

}

ID2CLASS = {

}

TASKS = ['GS', 'MTGInstrument', 'MTGGenre', 'MTGTop50', 'MTGMood', 'NSynthI', 'NSynthP', 'VocalSetS', 'VocalSetT','EMO',]
Regression_TASKS = ['EMO']
head_dir = './Prediction_Head/best-layer-MERT-v1-95M'
for task in TASKS:
    print('loading', task)
    with open(os.path.join(head_dir,f'{task}.id2class.json'), 'r') as f:
        ID2CLASS[task]=json.load(f)
    num_class = len(ID2CLASS[task].keys())
    CLASSIFIERS[task] = MLPProberBase(d=768, layer=MERT_BEST_LAYER_IDX[task], num_outputs=num_class)
    CLASSIFIERS[task].load_state_dict(torch.load(f'{head_dir}/{task}.ckpt')['state_dict'])
    CLASSIFIERS[task].to(device)

model.to(device)


def model_infernce(inputs):
    waveform, sample_rate = torchaudio.load(inputs)

    resample_rate = processor.sampling_rate

    # make sure the sample_rate aligned
    if resample_rate != sample_rate:
        # print(f'setting rate from {sample_rate} to {resample_rate}')
        resampler = T.Resample(sample_rate, resample_rate)
        waveform = resampler(waveform)
    
    waveform = waveform.view(-1,) # make it (n_sample, )
    model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
    model_inputs.to(device)
    with torch.no_grad():
        model_outputs = model(**model_inputs, output_hidden_states=True)

    # take a look at the output shape, there are 13 layers of representation
    # each layer performs differently in different downstream tasks, you should choose empirically
    all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()[1:,:,:].unsqueeze(0)
    print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
    all_layer_hidden_states = all_layer_hidden_states.mean(dim=2)

    task_output_texts = ""
    df = pd.DataFrame(columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
    df_objects = []

    for task in TASKS:
        num_class = len(ID2CLASS[task].keys())
        if MERT_BEST_LAYER_IDX[task] == 'all':
            logits = CLASSIFIERS[task](all_layer_hidden_states) # [1, 87]
        else:
            logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]])
        # print(f'task {task} logits:', logits.shape, 'num class:', num_class)
        
        sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1 
        sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True)
        # print(sorted_prob)
        # print(sorted_prob.shape)
        
        top_n_show = 5 if num_class >= 5 else num_class
        # task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n'
        # task_output_texts = task_output_texts + '----------------------\n'

        row_elements = [task]
        for idx in range(top_n_show):
            print(ID2CLASS[task])
            # print('id', str(sorted_idx[idx].item()))
            output_class_name = str(ID2CLASS[task][str(sorted_idx[idx].item())])
            output_class_name = re.sub(r'^\w+---', '', output_class_name)
            output_class_name = re.sub(r'^\w+\/\w+---', '', output_class_name)
            # print('output name', output_class_name)
            output_prob = f' {sorted_prob[idx].item():.2%}'
            row_elements.append(output_class_name+output_prob)
        # fill empty elment
        for _ in range(5+1 - len(row_elements)):
            row_elements.append(' ')
        df_objects.append(row_elements)
    df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
    return df
    
def convert_audio(inputs, microphone):
    if (microphone is not None):
        inputs = microphone
    df = model_infernce(inputs)    
    return df

def live_convert_audio(microphone):
    if (microphone is not None):
        inputs = microphone
    df = model_infernce(inputs)    
    return df

audio_chunked = gr.Interface(
    fn=convert_audio,
    inputs=inputs,
    outputs=outputs,
    allow_flagging="never",
    title=title,
    description=description,
    article=article,
    examples=audio_examples,
)

live_audio_chunked = gr.Interface(
    fn=live_convert_audio,
    inputs=live_inputs,
    outputs=outputs_live,
    allow_flagging="never",
    title=title,
    description=description,
    article=article,
    # examples=audio_examples,
    live=True,
)


demo = gr.Blocks()
with demo:
    gr.TabbedInterface(
        [
            audio_chunked,
            live_audio_chunked,
        ], 
        [
            "Audio File or Recording",
            "Live Streaming Music"
        ]
    )
# demo.queue(concurrency_count=1, max_size=5)
demo.launch(show_api=False)