File size: 10,192 Bytes
c37b2dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from nodes import MAX_RESOLUTION
from impact.utils import *
import impact.core as core
from impact.core import SEG
from impact.segs_nodes import SEGSPaste


try:
    from comfy_extras import nodes_differential_diffusion
except Exception:
    print(f"\n#############################################\n[Impact Pack] ComfyUI is an outdated version.\n#############################################\n")
    raise Exception("[Impact Pack] ComfyUI is an outdated version.")


class SEGSDetailerForAnimateDiff:
    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                     "image_frames": ("IMAGE", ),
                     "segs": ("SEGS", ),
                     "guide_size": ("FLOAT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                     "guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
                     "max_size": ("FLOAT", {"default": 768, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
                     "scheduler": (core.SCHEDULERS,),
                     "denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
                     "basic_pipe": ("BASIC_PIPE",),
                     "refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
                     },
                "optional": {
                     "refiner_basic_pipe_opt": ("BASIC_PIPE",),
                     "noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
                     "scheduler_func_opt": ("SCHEDULER_FUNC",),
                     }
                }

    RETURN_TYPES = ("SEGS", "IMAGE")
    RETURN_NAMES = ("segs", "cnet_images")
    OUTPUT_IS_LIST = (False, True)

    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detailer"

    @staticmethod
    def do_detail(image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,

                  denoise, basic_pipe, refiner_ratio=None, refiner_basic_pipe_opt=None, noise_mask_feather=0, scheduler_func_opt=None):

        model, clip, vae, positive, negative = basic_pipe
        if refiner_basic_pipe_opt is None:
            refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
        else:
            refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt

        segs = core.segs_scale_match(segs, image_frames.shape)

        new_segs = []
        cnet_image_list = []

        if noise_mask_feather > 0 and 'denoise_mask_function' not in model.model_options:
            model = nodes_differential_diffusion.DifferentialDiffusion().apply(model)[0]

        for seg in segs[1]:
            cropped_image_frames = None

            for image in image_frames:
                image = image.unsqueeze(0)
                cropped_image = seg.cropped_image if seg.cropped_image is not None else crop_tensor4(image, seg.crop_region)
                cropped_image = to_tensor(cropped_image)
                if cropped_image_frames is None:
                    cropped_image_frames = cropped_image
                else:
                    cropped_image_frames = torch.concat((cropped_image_frames, cropped_image), dim=0)

            cropped_image_frames = cropped_image_frames.cpu().numpy()

            # It is assumed that AnimateDiff does not support conditioning masks based on test results, but it will be added for future consideration.
            cropped_positive = [
                [condition, {
                    k: core.crop_condition_mask(v, cropped_image_frames, seg.crop_region) if k == "mask" else v
                    for k, v in details.items()
                }]
                for condition, details in positive
            ]

            cropped_negative = [
                [condition, {
                    k: core.crop_condition_mask(v, cropped_image_frames, seg.crop_region) if k == "mask" else v
                    for k, v in details.items()
                }]
                for condition, details in negative
            ]

            enhanced_image_tensor, cnet_images = core.enhance_detail_for_animatediff(cropped_image_frames, model, clip, vae, guide_size, guide_size_for, max_size,
                                                                                     seg.bbox, seed, steps, cfg, sampler_name, scheduler,
                                                                                     cropped_positive, cropped_negative, denoise, seg.cropped_mask,
                                                                                     refiner_ratio=refiner_ratio, refiner_model=refiner_model,
                                                                                     refiner_clip=refiner_clip, refiner_positive=refiner_positive,
                                                                                     refiner_negative=refiner_negative, control_net_wrapper=seg.control_net_wrapper,
                                                                                     noise_mask_feather=noise_mask_feather, scheduler_func=scheduler_func_opt)
            if cnet_images is not None:
                cnet_image_list.extend(cnet_images)

            if enhanced_image_tensor is None:
                new_cropped_image = cropped_image_frames
            else:
                new_cropped_image = enhanced_image_tensor.cpu().numpy()

            new_seg = SEG(new_cropped_image, seg.cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, None)
            new_segs.append(new_seg)

        return (segs[0], new_segs), cnet_image_list

    def doit(self, image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,

             denoise, basic_pipe, refiner_ratio=None, refiner_basic_pipe_opt=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None):

        segs, cnet_images = SEGSDetailerForAnimateDiff.do_detail(image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
                                                                 scheduler, denoise, basic_pipe, refiner_ratio, refiner_basic_pipe_opt,
                                                                 noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt)

        if len(cnet_images) == 0:
            cnet_images = [empty_pil_tensor()]

        return (segs, cnet_images)


class DetailerForEachPipeForAnimateDiff:
    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                      "image_frames": ("IMAGE", ),
                      "segs": ("SEGS", ),
                      "guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
                      "guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
                      "max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
                      "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                      "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                      "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                      "sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
                      "scheduler": (core.SCHEDULERS,),
                      "denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
                      "feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
                      "basic_pipe": ("BASIC_PIPE", ),
                      "refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
                      },
                "optional": {
                      "detailer_hook": ("DETAILER_HOOK",),
                      "refiner_basic_pipe_opt": ("BASIC_PIPE",),
                      "noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}),
                      "scheduler_func_opt": ("SCHEDULER_FUNC",),
                      }
                }

    RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE")
    RETURN_NAMES = ("image", "segs", "basic_pipe", "cnet_images")
    OUTPUT_IS_LIST = (False, False, False, True)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detailer"

    @staticmethod
    def doit(image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,

             denoise, feather, basic_pipe, refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None,

             noise_mask_feather=0, scheduler_func_opt=None):

        enhanced_segs = []
        cnet_image_list = []

        for sub_seg in segs[1]:
            single_seg = segs[0], [sub_seg]
            enhanced_seg, cnet_images = SEGSDetailerForAnimateDiff().do_detail(image_frames, single_seg, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
                                                                               denoise, basic_pipe, refiner_ratio, refiner_basic_pipe_opt, noise_mask_feather, scheduler_func_opt=scheduler_func_opt)

            image_frames = SEGSPaste.doit(image_frames, enhanced_seg, feather, alpha=255)[0]

            if cnet_images is not None:
                cnet_image_list.extend(cnet_images)

            if detailer_hook is not None:
                image_frames = detailer_hook.post_paste(image_frames)

            enhanced_segs += enhanced_seg[1]

        new_segs = segs[0], enhanced_segs
        return image_frames, new_segs, basic_pipe, cnet_image_list