Spaces:
Running
Running
File size: 38,019 Bytes
c37b2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
import os
import sys
import numpy as np
import torch
import cv2
from PIL import Image
import folder_paths
import comfy.utils
import time
import copy
import dill
import yaml
from ultralytics import YOLO
current_file_path = os.path.abspath(__file__)
current_directory = os.path.dirname(current_file_path)
from .LivePortrait.live_portrait_wrapper import LivePortraitWrapper
from .LivePortrait.utils.camera import get_rotation_matrix
from .LivePortrait.config.inference_config import InferenceConfig
from .LivePortrait.modules.spade_generator import SPADEDecoder
from .LivePortrait.modules.warping_network import WarpingNetwork
from .LivePortrait.modules.motion_extractor import MotionExtractor
from .LivePortrait.modules.appearance_feature_extractor import AppearanceFeatureExtractor
from .LivePortrait.modules.stitching_retargeting_network import StitchingRetargetingNetwork
from collections import OrderedDict
cur_device = None
def get_device():
global cur_device
if cur_device == None:
if torch.cuda.is_available():
cur_device = torch.device('cuda')
print("Uses CUDA device.")
elif torch.backends.mps.is_available():
cur_device = torch.device('mps')
print("Uses MPS device.")
else:
cur_device = torch.device('cpu')
print("Uses CPU device.")
return cur_device
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def rgb_crop(rgb, region):
return rgb[region[1]:region[3], region[0]:region[2]]
def rgb_crop_batch(rgbs, region):
return rgbs[:, region[1]:region[3], region[0]:region[2]]
def get_rgb_size(rgb):
return rgb.shape[1], rgb.shape[0]
def create_transform_matrix(x, y, s_x, s_y):
return np.float32([[s_x, 0, x], [0, s_y, y]])
def get_model_dir(m):
try:
return folder_paths.get_folder_paths(m)[0]
except:
return os.path.join(folder_paths.models_dir, m)
def calc_crop_limit(center, img_size, crop_size):
pos = center - crop_size / 2
if pos < 0:
crop_size += pos * 2
pos = 0
pos2 = pos + crop_size
if img_size < pos2:
crop_size -= (pos2 - img_size) * 2
pos2 = img_size
pos = pos2 - crop_size
return pos, pos2, crop_size
def retargeting(delta_out, driving_exp, factor, idxes):
for idx in idxes:
#delta_out[0, idx] -= src_exp[0, idx] * factor
delta_out[0, idx] += driving_exp[0, idx] * factor
class PreparedSrcImg:
def __init__(self, src_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori):
self.src_rgb = src_rgb
self.crop_trans_m = crop_trans_m
self.x_s_info = x_s_info
self.f_s_user = f_s_user
self.x_s_user = x_s_user
self.mask_ori = mask_ori
import requests
from tqdm import tqdm
class LP_Engine:
pipeline = None
detect_model = None
mask_img = None
temp_img_idx = 0
def get_temp_img_name(self):
self.temp_img_idx += 1
return "expression_edit_preview" + str(self.temp_img_idx) + ".png"
def download_model(_, file_path, model_url):
print('AdvancedLivePortrait: Downloading model...')
response = requests.get(model_url, stream=True)
try:
if response.status_code == 200:
total_size = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
# tqdm will display a progress bar
with open(file_path, 'wb') as file, tqdm(
desc='Downloading',
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in response.iter_content(block_size):
bar.update(len(data))
file.write(data)
except requests.exceptions.RequestException as err:
print('AdvancedLivePortrait: Model download failed: {err}')
print(f'AdvancedLivePortrait: Download it manually from: {model_url}')
print(f'AdvancedLivePortrait: And put it in {file_path}')
except Exception as e:
print(f'AdvancedLivePortrait: An unexpected error occurred: {e}')
def remove_ddp_dumplicate_key(_, state_dict):
state_dict_new = OrderedDict()
for key in state_dict.keys():
state_dict_new[key.replace('module.', '')] = state_dict[key]
return state_dict_new
def filter_for_model(_, checkpoint, prefix):
filtered_checkpoint = {key.replace(prefix + "_module.", ""): value for key, value in checkpoint.items() if
key.startswith(prefix)}
return filtered_checkpoint
def load_model(self, model_config, model_type):
device = get_device()
if model_type == 'stitching_retargeting_module':
ckpt_path = os.path.join(get_model_dir("liveportrait"), "retargeting_models", model_type + ".pth")
else:
ckpt_path = os.path.join(get_model_dir("liveportrait"), "base_models", model_type + ".pth")
is_safetensors = None
if os.path.isfile(ckpt_path) == False:
is_safetensors = True
ckpt_path = os.path.join(get_model_dir("liveportrait"), model_type + ".safetensors")
if os.path.isfile(ckpt_path) == False:
self.download_model(ckpt_path,
"https://huggingface.co/Kijai/LivePortrait_safetensors/resolve/main/" + model_type + ".safetensors")
model_params = model_config['model_params'][f'{model_type}_params']
if model_type == 'appearance_feature_extractor':
model = AppearanceFeatureExtractor(**model_params).to(device)
elif model_type == 'motion_extractor':
model = MotionExtractor(**model_params).to(device)
elif model_type == 'warping_module':
model = WarpingNetwork(**model_params).to(device)
elif model_type == 'spade_generator':
model = SPADEDecoder(**model_params).to(device)
elif model_type == 'stitching_retargeting_module':
# Special handling for stitching and retargeting module
config = model_config['model_params']['stitching_retargeting_module_params']
checkpoint = comfy.utils.load_torch_file(ckpt_path)
stitcher = StitchingRetargetingNetwork(**config.get('stitching'))
if is_safetensors:
stitcher.load_state_dict(self.filter_for_model(checkpoint, 'retarget_shoulder'))
else:
stitcher.load_state_dict(self.remove_ddp_dumplicate_key(checkpoint['retarget_shoulder']))
stitcher = stitcher.to(device)
stitcher.eval()
return {
'stitching': stitcher,
}
else:
raise ValueError(f"Unknown model type: {model_type}")
model.load_state_dict(comfy.utils.load_torch_file(ckpt_path))
model.eval()
return model
def load_models(self):
model_path = get_model_dir("liveportrait")
if not os.path.exists(model_path):
os.mkdir(model_path)
model_config_path = os.path.join(current_directory, 'LivePortrait', 'config', 'models.yaml')
model_config = yaml.safe_load(open(model_config_path, 'r'))
appearance_feature_extractor = self.load_model(model_config, 'appearance_feature_extractor')
motion_extractor = self.load_model(model_config, 'motion_extractor')
warping_module = self.load_model(model_config, 'warping_module')
spade_generator = self.load_model(model_config, 'spade_generator')
stitching_retargeting_module = self.load_model(model_config, 'stitching_retargeting_module')
self.pipeline = LivePortraitWrapper(InferenceConfig(), appearance_feature_extractor, motion_extractor, warping_module, spade_generator, stitching_retargeting_module)
def get_detect_model(self):
if self.detect_model == None:
model_dir = get_model_dir("ultralytics")
if not os.path.exists(model_dir): os.mkdir(model_dir)
model_path = os.path.join(model_dir, "face_yolov8n.pt")
if not os.path.exists(model_path):
self.download_model(model_path, "https://huggingface.co/Bingsu/adetailer/resolve/main/face_yolov8n.pt")
self.detect_model = YOLO(model_path)
return self.detect_model
def get_face_bboxes(self, image_rgb):
detect_model = self.get_detect_model()
pred = detect_model(image_rgb, conf=0.7, device="")
return pred[0].boxes.xyxy.cpu().numpy()
def detect_face(self, image_rgb, crop_factor, sort = True):
bboxes = self.get_face_bboxes(image_rgb)
w, h = get_rgb_size(image_rgb)
print(f"w, h:{w, h}")
cx = w / 2
min_diff = w
best_box = None
for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
if bbox_w < 30: continue
diff = abs(cx - (x1 + bbox_w / 2))
if diff < min_diff:
best_box = [x1, y1, x2, y2]
print(f"diff, min_diff, best_box:{diff, min_diff, best_box}")
min_diff = diff
if best_box == None:
print("Failed to detect face!!")
return [0, 0, w, h]
x1, y1, x2, y2 = best_box
#for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
crop_w = max(crop_h, crop_w)
crop_h = crop_w
kernel_x = int(x1 + bbox_w / 2)
kernel_y = int(y1 + bbox_h / 2)
new_x1 = int(kernel_x - crop_w / 2)
new_x2 = int(kernel_x + crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
new_y2 = int(kernel_y + crop_h / 2)
if not sort:
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
elif w < new_x2:
new_x1 -= (new_x2 - w)
new_x2 = w
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
elif h < new_y2:
new_y1 -= (new_y2 - h)
new_y2 = h
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
if w < new_x2 and h < new_y2:
over_x = new_x2 - w
over_y = new_y2 - h
over_min = min(over_x, over_y)
new_x2 -= over_min
new_y2 -= over_min
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
def calc_face_region(self, square, dsize):
region = copy.deepcopy(square)
is_changed = False
if dsize[0] < region[2]:
region[2] = dsize[0]
is_changed = True
if dsize[1] < region[3]:
region[3] = dsize[1]
is_changed = True
return region, is_changed
def expand_img(self, rgb_img, square):
#new_img = rgb_crop(rgb_img, face_region)
crop_trans_m = create_transform_matrix(max(-square[0], 0), max(-square[1], 0), 1, 1)
new_img = cv2.warpAffine(rgb_img, crop_trans_m, (square[2] - square[0], square[3] - square[1]),
cv2.INTER_LINEAR)
return new_img
def get_pipeline(self):
if self.pipeline == None:
print("Load pipeline...")
self.load_models()
return self.pipeline
def prepare_src_image(self, img):
h, w = img.shape[:2]
input_shape = [256,256]
if h != input_shape[0] or w != input_shape[1]:
if 256 < h: interpolation = cv2.INTER_AREA
else: interpolation = cv2.INTER_LINEAR
x = cv2.resize(img, (input_shape[0], input_shape[1]), interpolation = interpolation)
else:
x = img.copy()
if x.ndim == 3:
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
elif x.ndim == 4:
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
else:
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
x = np.clip(x, 0, 1) # clip to 0~1
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
x = x.to(get_device())
return x
def GetMaskImg(self):
if self.mask_img is None:
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "./LivePortrait/utils/resources/mask_template.png")
self.mask_img = cv2.imread(path, cv2.IMREAD_COLOR)
return self.mask_img
def crop_face(self, img_rgb, crop_factor):
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
return face_img
def prepare_source(self, source_image, crop_factor, is_video = False, tracking = False):
print("Prepare source...")
engine = self.get_pipeline()
source_image_np = (source_image * 255).byte().numpy()
img_rgb = source_image_np[0]
psi_list = []
for img_rgb in source_image_np:
if tracking or len(psi_list) == 0:
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
s_x = (face_region[2] - face_region[0]) / 512.
s_y = (face_region[3] - face_region[1]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s_x, s_y)
mask_ori = cv2.warpAffine(self.GetMaskImg(), crop_trans_m, get_rgb_size(img_rgb), cv2.INTER_LINEAR)
mask_ori = mask_ori.astype(np.float32) / 255.
if is_changed:
s = (crop_region[2] - crop_region[0]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s, s)
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
i_s = self.prepare_src_image(face_img)
x_s_info = engine.get_kp_info(i_s)
f_s_user = engine.extract_feature_3d(i_s)
x_s_user = engine.transform_keypoint(x_s_info)
psi = PreparedSrcImg(img_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori)
if is_video == False:
return psi
psi_list.append(psi)
return psi_list
def prepare_driving_video(self, face_images):
print("Prepare driving video...")
pipeline = self.get_pipeline()
f_img_np = (face_images * 255).byte().numpy()
out_list = []
for f_img in f_img_np:
i_d = self.prepare_src_image(f_img)
d_info = pipeline.get_kp_info(i_d)
out_list.append(d_info)
return out_list
def calc_fe(_, x_d_new, eyes, eyebrow, wink, pupil_x, pupil_y, mouth, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll):
x_d_new[0, 20, 1] += smile * -0.01
x_d_new[0, 14, 1] += smile * -0.02
x_d_new[0, 17, 1] += smile * 0.0065
x_d_new[0, 17, 2] += smile * 0.003
x_d_new[0, 13, 1] += smile * -0.00275
x_d_new[0, 16, 1] += smile * -0.00275
x_d_new[0, 3, 1] += smile * -0.0035
x_d_new[0, 7, 1] += smile * -0.0035
x_d_new[0, 19, 1] += mouth * 0.001
x_d_new[0, 19, 2] += mouth * 0.0001
x_d_new[0, 17, 1] += mouth * -0.0001
rotate_pitch -= mouth * 0.05
x_d_new[0, 20, 2] += eee * -0.001
x_d_new[0, 20, 1] += eee * -0.001
#x_d_new[0, 19, 1] += eee * 0.0006
x_d_new[0, 14, 1] += eee * -0.001
x_d_new[0, 14, 1] += woo * 0.001
x_d_new[0, 3, 1] += woo * -0.0005
x_d_new[0, 7, 1] += woo * -0.0005
x_d_new[0, 17, 2] += woo * -0.0005
x_d_new[0, 11, 1] += wink * 0.001
x_d_new[0, 13, 1] += wink * -0.0003
x_d_new[0, 17, 0] += wink * 0.0003
x_d_new[0, 17, 1] += wink * 0.0003
x_d_new[0, 3, 1] += wink * -0.0003
rotate_roll -= wink * 0.1
rotate_yaw -= wink * 0.1
if 0 < pupil_x:
x_d_new[0, 11, 0] += pupil_x * 0.0007
x_d_new[0, 15, 0] += pupil_x * 0.001
else:
x_d_new[0, 11, 0] += pupil_x * 0.001
x_d_new[0, 15, 0] += pupil_x * 0.0007
x_d_new[0, 11, 1] += pupil_y * -0.001
x_d_new[0, 15, 1] += pupil_y * -0.001
eyes -= pupil_y / 2.
x_d_new[0, 11, 1] += eyes * -0.001
x_d_new[0, 13, 1] += eyes * 0.0003
x_d_new[0, 15, 1] += eyes * -0.001
x_d_new[0, 16, 1] += eyes * 0.0003
x_d_new[0, 1, 1] += eyes * -0.00025
x_d_new[0, 2, 1] += eyes * 0.00025
if 0 < eyebrow:
x_d_new[0, 1, 1] += eyebrow * 0.001
x_d_new[0, 2, 1] += eyebrow * -0.001
else:
x_d_new[0, 1, 0] += eyebrow * -0.001
x_d_new[0, 2, 0] += eyebrow * 0.001
x_d_new[0, 1, 1] += eyebrow * 0.0003
x_d_new[0, 2, 1] += eyebrow * -0.0003
return torch.Tensor([rotate_pitch, rotate_yaw, rotate_roll])
g_engine = LP_Engine()
class ExpressionSet:
def __init__(self, erst = None, es = None):
if es != None:
self.e = copy.deepcopy(es.e) # [:, :, :]
self.r = copy.deepcopy(es.r) # [:]
self.s = copy.deepcopy(es.s)
self.t = copy.deepcopy(es.t)
elif erst != None:
self.e = erst[0]
self.r = erst[1]
self.s = erst[2]
self.t = erst[3]
else:
self.e = torch.from_numpy(np.zeros((1, 21, 3))).float().to(get_device())
self.r = torch.Tensor([0, 0, 0])
self.s = 0
self.t = 0
def div(self, value):
self.e /= value
self.r /= value
self.s /= value
self.t /= value
def add(self, other):
self.e += other.e
self.r += other.r
self.s += other.s
self.t += other.t
def sub(self, other):
self.e -= other.e
self.r -= other.r
self.s -= other.s
self.t -= other.t
def mul(self, value):
self.e *= value
self.r *= value
self.s *= value
self.t *= value
#def apply_ratio(self, ratio): self.exp *= ratio
def logging_time(original_fn):
def wrapper_fn(*args, **kwargs):
start_time = time.time()
result = original_fn(*args, **kwargs)
end_time = time.time()
print("WorkingTime[{}]: {} sec".format(original_fn.__name__, end_time - start_time))
return result
return wrapper_fn
#exp_data_dir = os.path.join(current_directory, "exp_data")
exp_data_dir = os.path.join(folder_paths.output_directory, "exp_data")
if os.path.isdir(exp_data_dir) == False:
os.mkdir(exp_data_dir)
class SaveExpData:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"file_name": ("STRING", {"multiline": False, "default": ""}),
},
"optional": {"save_exp": ("EXP_DATA",), }
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("file_name",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
OUTPUT_NODE = True
def run(self, file_name, save_exp:ExpressionSet=None):
if save_exp == None or file_name == "":
return file_name
with open(os.path.join(exp_data_dir, file_name + ".exp"), "wb") as f:
dill.dump(save_exp, f)
return file_name
class LoadExpData:
@classmethod
def INPUT_TYPES(s):
file_list = [os.path.splitext(file)[0] for file in os.listdir(exp_data_dir) if file.endswith('.exp')]
return {"required": {
"file_name": (sorted(file_list, key=str.lower),),
"ratio": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
},
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
def run(self, file_name, ratio):
# es = ExpressionSet()
with open(os.path.join(exp_data_dir, file_name + ".exp"), 'rb') as f:
es = dill.load(f)
es.mul(ratio)
return (es,)
class ExpData:
@classmethod
def INPUT_TYPES(s):
return {"required":{
#"code": ("STRING", {"multiline": False, "default": ""}),
"code1": ("INT", {"default": 0}),
"value1": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code2": ("INT", {"default": 0}),
"value2": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code3": ("INT", {"default": 0}),
"value3": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code4": ("INT", {"default": 0}),
"value4": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
"code5": ("INT", {"default": 0}),
"value5": ("FLOAT", {"default": 0, "min": -100, "max": 100, "step": 0.1}),
},
"optional":{"add_exp": ("EXP_DATA",),}
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
def run(self, code1, value1, code2, value2, code3, value3, code4, value4, code5, value5, add_exp=None):
if add_exp == None:
es = ExpressionSet()
else:
es = ExpressionSet(es = add_exp)
codes = [code1, code2, code3, code4, code5]
values = [value1, value2, value3, value4, value5]
for i in range(5):
idx = int(codes[i] / 10)
r = codes[i] % 10
es.e[0, idx, r] += values[i] * 0.001
return (es,)
class PrintExpData:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"cut_noise": ("FLOAT", {"default": 0, "min": 0, "max": 100, "step": 0.1}),
},
"optional": {"exp": ("EXP_DATA",), }
}
RETURN_TYPES = ("EXP_DATA",)
RETURN_NAMES = ("exp",)
FUNCTION = "run"
CATEGORY = "AdvancedLivePortrait"
OUTPUT_NODE = True
def run(self, cut_noise, exp = None):
if exp == None: return (exp,)
cuted_list = []
e = exp.exp * 1000
for idx in range(21):
for r in range(3):
a = abs(e[0, idx, r])
if(cut_noise < a): cuted_list.append((a, e[0, idx, r], idx*10+r))
sorted_list = sorted(cuted_list, reverse=True, key=lambda item: item[0])
print(f"sorted_list: {[[item[2], round(float(item[1]),1)] for item in sorted_list]}")
return (exp,)
class Command:
def __init__(self, es, change, keep):
self.es:ExpressionSet = es
self.change = change
self.keep = keep
crop_factor_default = 1.7
crop_factor_min = 1.5
crop_factor_max = 2.5
class AdvancedLivePortrait:
def __init__(self):
self.src_images = None
self.driving_images = None
self.pbar = comfy.utils.ProgressBar(1)
self.crop_factor = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"retargeting_eyes": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"retargeting_mouth": ("FLOAT", {"default": 0, "min": 0, "max": 1, "step": 0.01}),
"crop_factor": ("FLOAT", {"default": crop_factor_default,
"min": crop_factor_min, "max": crop_factor_max, "step": 0.1}),
"turn_on": ("BOOLEAN", {"default": True}),
"tracking_src_vid": ("BOOLEAN", {"default": False}),
"animate_without_vid": ("BOOLEAN", {"default": False}),
"command": ("STRING", {"multiline": True, "default": ""}),
},
"optional": {
"src_images": ("IMAGE",),
"motion_link": ("EDITOR_LINK",),
"driving_images": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "run"
OUTPUT_NODE = True
CATEGORY = "AdvancedLivePortrait"
# INPUT_IS_LIST = False
# OUTPUT_IS_LIST = (False,)
def parsing_command(self, command, motoin_link):
command.replace(' ', '')
# if command == '': return
lines = command.split('\n')
cmd_list = []
total_length = 0
i = 0
#old_es = None
for line in lines:
i += 1
if line == '': continue
try:
cmds = line.split('=')
idx = int(cmds[0])
if idx == 0: es = ExpressionSet()
else: es = ExpressionSet(es = motoin_link[idx])
cmds = cmds[1].split(':')
change = int(cmds[0])
keep = int(cmds[1])
except:
assert False, f"(AdvancedLivePortrait) Command Err Line {i}: {line}"
return None, None
total_length += change + keep
es.div(change)
cmd_list.append(Command(es, change, keep))
return cmd_list, total_length
def run(self, retargeting_eyes, retargeting_mouth, turn_on, tracking_src_vid, animate_without_vid, command, crop_factor,
src_images=None, driving_images=None, motion_link=None):
if turn_on == False: return (None,None)
src_length = 1
if src_images == None:
if motion_link != None:
self.psi_list = [motion_link[0]]
else: return (None,None)
if src_images != None:
src_length = len(src_images)
if id(src_images) != id(self.src_images) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.src_images = src_images
if 1 < src_length:
self.psi_list = g_engine.prepare_source(src_images, crop_factor, True, tracking_src_vid)
else:
self.psi_list = [g_engine.prepare_source(src_images, crop_factor)]
cmd_list, cmd_length = self.parsing_command(command, motion_link)
if cmd_list == None: return (None,None)
cmd_idx = 0
driving_length = 0
if driving_images is not None:
if id(driving_images) != id(self.driving_images):
self.driving_images = driving_images
self.driving_values = g_engine.prepare_driving_video(driving_images)
driving_length = len(self.driving_values)
total_length = max(driving_length, src_length)
if animate_without_vid:
total_length = max(total_length, cmd_length)
c_i_es = ExpressionSet()
c_o_es = ExpressionSet()
d_0_es = None
out_list = []
psi = None
pipeline = g_engine.get_pipeline()
for i in range(total_length):
if i < src_length:
psi = self.psi_list[i]
s_info = psi.x_s_info
s_es = ExpressionSet(erst=(s_info['kp'] + s_info['exp'], torch.Tensor([0, 0, 0]), s_info['scale'], s_info['t']))
new_es = ExpressionSet(es = s_es)
if i < cmd_length:
cmd = cmd_list[cmd_idx]
if 0 < cmd.change:
cmd.change -= 1
c_i_es.add(cmd.es)
c_i_es.sub(c_o_es)
elif 0 < cmd.keep:
cmd.keep -= 1
new_es.add(c_i_es)
if cmd.change == 0 and cmd.keep == 0:
cmd_idx += 1
if cmd_idx < len(cmd_list):
c_o_es = ExpressionSet(es = c_i_es)
cmd = cmd_list[cmd_idx]
c_o_es.div(cmd.change)
elif 0 < cmd_length:
new_es.add(c_i_es)
if i < driving_length:
d_i_info = self.driving_values[i]
d_i_r = torch.Tensor([d_i_info['pitch'], d_i_info['yaw'], d_i_info['roll']])#.float().to(device="cuda:0")
if d_0_es is None:
d_0_es = ExpressionSet(erst = (d_i_info['exp'], d_i_r, d_i_info['scale'], d_i_info['t']))
retargeting(s_es.e, d_0_es.e, retargeting_eyes, (11, 13, 15, 16))
retargeting(s_es.e, d_0_es.e, retargeting_mouth, (14, 17, 19, 20))
new_es.e += d_i_info['exp'] - d_0_es.e
new_es.r += d_i_r - d_0_es.r
new_es.t += d_i_info['t'] - d_0_es.t
r_new = get_rotation_matrix(
s_info['pitch'] + new_es.r[0], s_info['yaw'] + new_es.r[1], s_info['roll'] + new_es.r[2])
d_new = new_es.s * (new_es.e @ r_new) + new_es.t
d_new = pipeline.stitching(psi.x_s_user, d_new)
crop_out = pipeline.warp_decode(psi.f_s_user, psi.x_s_user, d_new)
crop_out = pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb),
cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(
np.uint8)
out_list.append(out)
self.pbar.update_absolute(i+1, total_length, ("PNG", Image.fromarray(crop_out), None))
if len(out_list) == 0: return (None,)
out_imgs = torch.cat([pil2tensor(img_rgb) for img_rgb in out_list])
return (out_imgs,)
class ExpressionEditor:
def __init__(self):
self.sample_image = None
self.src_image = None
self.crop_factor = None
@classmethod
def INPUT_TYPES(s):
display = "number"
#display = "slider"
return {
"required": {
"rotate_pitch": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"rotate_yaw": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"rotate_roll": ("FLOAT", {"default": 0, "min": -20, "max": 20, "step": 0.5, "display": display}),
"blink": ("FLOAT", {"default": 0, "min": -20, "max": 5, "step": 0.5, "display": display}),
"eyebrow": ("FLOAT", {"default": 0, "min": -10, "max": 15, "step": 0.5, "display": display}),
"wink": ("FLOAT", {"default": 0, "min": 0, "max": 25, "step": 0.5, "display": display}),
"pupil_x": ("FLOAT", {"default": 0, "min": -15, "max": 15, "step": 0.5, "display": display}),
"pupil_y": ("FLOAT", {"default": 0, "min": -15, "max": 15, "step": 0.5, "display": display}),
"aaa": ("FLOAT", {"default": 0, "min": -30, "max": 120, "step": 1, "display": display}),
"eee": ("FLOAT", {"default": 0, "min": -20, "max": 15, "step": 0.2, "display": display}),
"woo": ("FLOAT", {"default": 0, "min": -20, "max": 15, "step": 0.2, "display": display}),
"smile": ("FLOAT", {"default": 0, "min": -0.3, "max": 1.3, "step": 0.01, "display": display}),
"src_ratio": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01, "display": display}),
"sample_ratio": ("FLOAT", {"default": 1, "min": -0.2, "max": 1.2, "step": 0.01, "display": display}),
"sample_parts": (["OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"],),
"crop_factor": ("FLOAT", {"default": crop_factor_default,
"min": crop_factor_min, "max": crop_factor_max, "step": 0.1}),
},
"optional": {"src_image": ("IMAGE",), "motion_link": ("EDITOR_LINK",),
"sample_image": ("IMAGE",), "add_exp": ("EXP_DATA",),
},
}
RETURN_TYPES = ("IMAGE", "EDITOR_LINK", "EXP_DATA")
RETURN_NAMES = ("image", "motion_link", "save_exp")
FUNCTION = "run"
OUTPUT_NODE = True
CATEGORY = "AdvancedLivePortrait"
# INPUT_IS_LIST = False
# OUTPUT_IS_LIST = (False,)
def run(self, rotate_pitch, rotate_yaw, rotate_roll, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
src_ratio, sample_ratio, sample_parts, crop_factor, src_image=None, sample_image=None, motion_link=None, add_exp=None):
rotate_yaw = -rotate_yaw
new_editor_link = None
if motion_link != None:
self.psi = motion_link[0]
new_editor_link = motion_link.copy()
elif src_image != None:
if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.psi = g_engine.prepare_source(src_image, crop_factor)
self.src_image = src_image
new_editor_link = []
new_editor_link.append(self.psi)
else:
return (None,None)
pipeline = g_engine.get_pipeline()
psi = self.psi
s_info = psi.x_s_info
#delta_new = copy.deepcopy()
s_exp = s_info['exp'] * src_ratio
s_exp[0, 5] = s_info['exp'][0, 5]
s_exp += s_info['kp']
es = ExpressionSet()
if sample_image != None:
if id(self.sample_image) != id(sample_image):
self.sample_image = sample_image
d_image_np = (sample_image * 255).byte().numpy()
d_face = g_engine.crop_face(d_image_np[0], 1.7)
i_d = g_engine.prepare_src_image(d_face)
self.d_info = pipeline.get_kp_info(i_d)
self.d_info['exp'][0, 5, 0] = 0
self.d_info['exp'][0, 5, 1] = 0
# "OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"
if sample_parts == "OnlyExpression" or sample_parts == "All":
es.e += self.d_info['exp'] * sample_ratio
if sample_parts == "OnlyRotation" or sample_parts == "All":
rotate_pitch += self.d_info['pitch'] * sample_ratio
rotate_yaw += self.d_info['yaw'] * sample_ratio
rotate_roll += self.d_info['roll'] * sample_ratio
elif sample_parts == "OnlyMouth":
retargeting(es.e, self.d_info['exp'], sample_ratio, (14, 17, 19, 20))
elif sample_parts == "OnlyEyes":
retargeting(es.e, self.d_info['exp'], sample_ratio, (1, 2, 11, 13, 15, 16))
es.r = g_engine.calc_fe(es.e, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll)
if add_exp != None:
es.add(add_exp)
new_rotate = get_rotation_matrix(s_info['pitch'] + es.r[0], s_info['yaw'] + es.r[1],
s_info['roll'] + es.r[2])
x_d_new = (s_info['scale'] * (1 + es.s)) * ((s_exp + es.e) @ new_rotate) + s_info['t']
x_d_new = pipeline.stitching(psi.x_s_user, x_d_new)
crop_out = pipeline.warp_decode(psi.f_s_user, psi.x_s_user, x_d_new)
crop_out = pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb), cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(np.uint8)
out_img = pil2tensor(out)
filename = g_engine.get_temp_img_name() #"fe_edit_preview.png"
folder_paths.get_save_image_path(filename, folder_paths.get_temp_directory())
img = Image.fromarray(crop_out)
img.save(os.path.join(folder_paths.get_temp_directory(), filename), compress_level=1)
results = list()
results.append({"filename": filename, "type": "temp"})
new_editor_link.append(es)
return {"ui": {"images": results}, "result": (out_img, new_editor_link, es)}
NODE_CLASS_MAPPINGS = {
"AdvancedLivePortrait": AdvancedLivePortrait,
"ExpressionEditor": ExpressionEditor,
"LoadExpData": LoadExpData,
"SaveExpData": SaveExpData,
"ExpData": ExpData,
"PrintExpData:": PrintExpData,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"AdvancedLivePortrait": "Advanced Live Portrait (PHM)",
"ExpressionEditor": "Expression Editor (PHM)",
"LoadExpData": "Load Exp Data (PHM)",
"SaveExpData": "Save Exp Data (PHM)"
} |