Spaces:
Running
Running
File size: 1,584 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script
import comfy.model_management as model_management
import os, sys
import subprocess, threading
def install_deps():
try:
import mediapipe
except ImportError:
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'mediapipe'])
run_script([sys.executable, '-s', '-m', 'pip', 'install', '--upgrade', 'protobuf'])
class Media_Pipe_Face_Mesh_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
max_faces=INPUT.INT(default=10, min=1, max=50), #Which image has more than 50 detectable faces?
min_confidence=INPUT.FLOAT(default=0.5, min=0.1),
resolution=INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "detect"
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
def detect(self, image, max_faces=10, min_confidence=0.5, resolution=512):
#Ref: https://github.com/Fannovel16/comfy_controlnet_preprocessors/issues/70#issuecomment-1677967369
install_deps()
from custom_controlnet_aux.mediapipe_face import MediapipeFaceDetector
return (common_annotator_call(MediapipeFaceDetector(), image, max_faces=max_faces, min_confidence=min_confidence, resolution=resolution), )
NODE_CLASS_MAPPINGS = {
"MediaPipe-FaceMeshPreprocessor": Media_Pipe_Face_Mesh_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
"MediaPipe-FaceMeshPreprocessor": "MediaPipe Face Mesh"
} |