Spaces:
Running
Running
File size: 2,585 Bytes
681fa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, MAX_RESOLUTION
import comfy.model_management as model_management
class Metric3D_Depth_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
backbone=INPUT.COMBO(["vit-small", "vit-large", "vit-giant2"]),
fx=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
fy=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
resolution=INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, backbone="vit-small", fx=1000, fy=1000, resolution=512):
from custom_controlnet_aux.metric3d import Metric3DDetector
model = Metric3DDetector.from_pretrained(filename=f"metric_depth_{backbone.replace('-', '_')}_800k.pth").to(model_management.get_torch_device())
cb = lambda image, **kwargs: model(image, **kwargs)[0]
out = common_annotator_call(cb, image, resolution=resolution, fx=fx, fy=fy, depth_and_normal=True)
del model
return (out, )
class Metric3D_Normal_Map_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return define_preprocessor_inputs(
backbone=INPUT.COMBO(["vit-small", "vit-large", "vit-giant2"]),
fx=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
fy=INPUT.INT(default=1000, min=1, max=MAX_RESOLUTION),
resolution=INPUT.RESOLUTION()
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
def execute(self, image, backbone="vit-small", fx=1000, fy=1000, resolution=512):
from custom_controlnet_aux.metric3d import Metric3DDetector
model = Metric3DDetector.from_pretrained(filename=f"metric_depth_{backbone.replace('-', '_')}_800k.pth").to(model_management.get_torch_device())
cb = lambda image, **kwargs: model(image, **kwargs)[1]
out = common_annotator_call(cb, image, resolution=resolution, fx=fx, fy=fy, depth_and_normal=True)
del model
return (out, )
NODE_CLASS_MAPPINGS = {
"Metric3D-DepthMapPreprocessor": Metric3D_Depth_Map_Preprocessor,
"Metric3D-NormalMapPreprocessor": Metric3D_Normal_Map_Preprocessor
}
NODE_DISPLAY_NAME_MAPPINGS = {
"Metric3D-DepthMapPreprocessor": "Metric3D Depth Map",
"Metric3D-NormalMapPreprocessor": "Metric3D Normal Map"
}
|