File size: 3,942 Bytes
cd438c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import numpy as np
import math
import cv2

world_mat_object = torch.tensor([
    [0.5085, 0.3226, 0.7984, 0.0000],
    [-0.3479, 0.9251, -0.1522, 0.0000],
    [-0.7877, -0.2003, 0.5826, 0.3384],
    [0.0000, 0.0000, 0.0000, 1.0000]
])

world_mat_inv = torch.tensor([
    [0.4019, 0.9157, 0.0000, 0.3359],
    [-0.1932, 0.0848, 0.9775, -1.0227],
    [0.8951, -0.3928, 0.2110, -7.0748],
    [-0.0000, 0.0000, -0.0000, 1.0000]
])


proj = torch.tensor([
    [2.1875, 0.0000, 0.0000, 0.0000],
    [0.0000, 3.8889, 0.0000, 0.0000],
    [0.0000, 0.0000, -1.0020, -0.2002],
    [0.0000, 0.0000, -1.0000, 0.0000]
])


RANGES = [[0, 540], [100, 960]]

TARGET = [500, -1]


def resize(img):
    if TARGET[1] == -1:
        r = img.shape[0] / img.shape[1]
        img = cv2.resize(img, (TARGET[0], int(r * TARGET[0])))
    else:
        img = cv2.resize(img, (TARGET[0], TARGET[1]))

    return img


def scatter(u_pix, v_pix, distances, res, radius=5):
    distances -= 6
    img = np.zeros(res)
    for (u, v, d) in zip(u_pix, v_pix, distances):
        v, u = int(v), int(u)
        f = np.exp(-d / 0.7)
        if radius == 0:
            img[v, u] = max(img[v, u], f)
        else:
            for t1 in range(-radius, radius):
                for t2 in range(-radius, radius):
                    ty, tx = v - t1, u - t2
                    ty, tx = max(0, ty), max(0, tx)
                    ty, tx = min(res[0] - 1, ty), min(res[1] - 1, tx)
                    img[ty, tx] = max(img[ty, tx], f)

    return img


def generate_roation(phi_x, phi_y, phi_z):
    def Rx(theta):
        return torch.tensor([[1, 0, 0],
                          [0, math.cos(theta), -math.sin(theta)],
                          [0, math.sin(theta), math.cos(theta)]])

    def Ry(theta):
        return torch.tensor([[math.cos(theta), 0, math.sin(theta)],
                          [0, 1, 0],
                          [-math.sin(theta), 0, math.cos(theta)]])

    def Rz(theta):
        return torch.tensor([[math.cos(theta), -math.sin(theta), 0],
                          [math.sin(theta), math.cos(theta), 0],
                          [0, 0, 1]])

    return Rz(phi_z) @ Ry(phi_y) @ Rx(phi_x)


def rotate_pc(pc, rx, ry, rz):
    rotation = generate_roation(rx, ry, rz)
    rotated = pc.clone()
    rotated[:, :3] = rotated[:, :3] @ rotation.T
    if rotated.shape[-1] == 6:
        rotated[:, 3:] = rotated[:, 3:] @ rotation.T
    return rotated


def draw_pc(pc: torch.Tensor, res=(540, 960), radius=5, timer=None, dy=0, scale=1):
    xyz = pc[:, :3]
    xyz -= xyz.mean(dim=0)
    t_scale = xyz.norm(dim=-1).max()
    xyz /= t_scale
    xyz *= scale

    xyz[:, -1] += xyz[:, -1].min()

    n, _ = xyz.shape

    if timer is not None:
        with timer('project'):
            xyz_pad = torch.cat([xyz, torch.ones_like(pc[:, :1])], dim=-1)
            xyz_local = xyz_pad @ world_mat_inv.T
            distances = -xyz_local[:, 2]

            projected = xyz_local @ proj.T
            projected = projected / projected[:, 3:4]
            projected = projected[:, :3]

            u_pix = ((projected[0] + 1) / 2) * res[1]
            v_pix = ((projected[1] + 1) / 2) * res[0] + dy

        with timer('z-buffer'):
            z_buffer = scatter(u_pix, v_pix, distances, res, radius=radius)[:, :]
    else:
        xyz_pad = torch.cat([xyz, torch.ones_like(pc[:, :1])], dim=-1)
        xyz_local = xyz_pad @ world_mat_inv.T
        distances = -xyz_local[:, 2]

        projected = xyz_local @ proj.T
        projected = projected / projected[:, 3:4]
        projected = projected[:, :3]

        u_pix = ((projected[:, 0] + 1) / 2) * res[1]
        v_pix = ((projected[:, 1] + 1) / 2) * res[0] + dy

        z_buffer = scatter(u_pix, v_pix, distances, res, radius=radius)[:, :]

    z_buffer = z_buffer[RANGES[0][0]: RANGES[0][1], :]
    z_buffer = z_buffer[:, RANGES[1][0]:RANGES[1][1]]
    z_buffer = resize(z_buffer)
    return z_buffer