File size: 7,322 Bytes
db7f350
3d87820
 
db7f350
 
 
 
3d87820
db7f350
 
 
 
 
 
3d87820
 
db7f350
 
 
47c3ae2
 
3d87820
47c3ae2
 
3d87820
 
db7f350
 
3d87820
 
 
db7f350
 
47c3ae2
 
bd73591
 
 
 
db7f350
3d87820
 
 
47c3ae2
3d87820
 
 
db7f350
47c3ae2
db7f350
 
3d87820
 
db7f350
 
 
 
3d87820
db7f350
 
 
 
 
 
 
 
3d87820
db7f350
 
 
 
 
3d87820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db7f350
 
 
 
3d87820
db7f350
 
 
8ce97f8
3d87820
 
db7f350
3d87820
db7f350
 
 
 
 
3d87820
bd73591
 
 
 
db7f350
3d87820
 
 
db7f350
 
3d87820
db7f350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d87820
 
 
db7f350
3d87820
 
 
db7f350
3d87820
 
 
db7f350
 
 
 
 
 
bd73591
 
 
db7f350
 
 
8ce97f8
 
3d87820
8ce97f8
3d87820
8ce97f8
 
 
db7f350
 
 
 
 
 
3d87820
db7f350
3d87820
db7f350
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import json
import datetime
from email.utils import parseaddr

import gradio as gr
import pandas as pd
import numpy as np

from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi

# InfoStrings
from scorer import question_scorer
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CHANGELOG_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT

BALM_TOKEN = os.environ.get("BALM_TOKEN", None)

OWNER="gaia-benchmark"
DATA_DATASET = f"{OWNER}/GAIA"
SUBMISSION_DATASET = f"{OWNER}/submissions"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"

SPLIT="validation" #Change to test once we are ready to go 
api = HfApi()

os.makedirs("scored", exist_ok=True)

# Display the results
eval_results = {}
for level in range(1, 4):
    eval_results[level] = load_dataset(RESULTS_DATASET, f"2023_level{level}", use_auth_token=BALM_TOKEN, split=SPLIT)


eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail"))
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))

# Gold answers
gold_results = {}
for level in range(1, 4):
    level_dataset = load_dataset(DATA_DATASET, f"2023_level{level}", split=SPLIT, use_auth_token=BALM_TOKEN)
    gold_results[level] = {row["task_id"]: row["ground_truth"] for row in level_dataset}


def restart_space():
    api.restart_space(repo_id=LEADERBOARD_PATH, token=BALM_TOKEN)


COLS = ["Model", "Score ⬆️", "Organisation"]
TYPES = ["str", "number", "str",]

def add_new_eval(
    level_of_dev: str,
    model: str,
    path_to_file,
    organisation: str,
    mail: str,
):
    level = int(level_of_dev.split(" ")[-1])

    # Very basic email parsing
    _, parsed_mail = parseaddr(mail)
    if not "@" in parsed_mail:
        return format_warning("Please provide a valid email adress.")

    print("Adding new eval")

    # Check if the combination model/org already exists and prints a warning message if yes
    if model.lower() in set(eval_results[level]["model"]) and organisation.lower() in set(eval_results[level]["organisation"]):
        return format_warning("This model has been already submitted.")

    # Save submitted file
    api.upload_file(
        repo_id=SUBMISSION_DATASET, 
        path_or_fileobj=path_to_file.name, 
        path_in_repo=f"{organisation}/{model}/level{level}_raw_{datetime.datetime.today()}.jsonl",
        repo_type="dataset", 
        token=BALM_TOKEN
    )

    # Compute score
    file_path = path_to_file.name
    total_score = 0
    with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
        with open(file_path, 'r') as f:
            for line in f:
                task = json.loads(line)

                if "model_answer" not in task:
                    raise Exception("No model_answer key in the file provided")
                answer = task["model_answer"]
                task_id = task["task_id"]
                
                score = question_scorer(task['model_answer'], gold_results[level][task_id])
                
                scored_file.write(
                    json.dumps({
                        "id": task_id,
                        "model_answer": answer,
                        "score": score
                    }) + "\n"
                )

                total_score += score
    
    # Save scored file
    api.upload_file(
        repo_id=SUBMISSION_DATASET, 
        path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
        path_in_repo=f"{organisation}/{model}/level{level}_scored_{datetime.datetime.today()}.jsonl", 
        repo_type="dataset", 
        token=BALM_TOKEN
    )

    # Actual submission
    eval_entry = {
        "model": model,
        "score": total_score,
        "organisation": organisation,
        "mail": mail,
    }
    eval_results[level] = eval_results[level].add_item(eval_entry)
    # TODO: change split to "test" once we have the actual results 
    eval_results[level].push_to_hub(f"{OWNER}/BALM_ResultsLevel{level}", token=BALM_TOKEN, split=SPLIT)

    return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")


def refresh():
    eval_results = {}
    for level in range(1, 4):
        eval_results[level] = load_dataset(f"{OWNER}/BALM_ResultsLevel{level}", use_auth_token=BALM_TOKEN, split=SPLIT)
    eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail"))
    eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
    eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
    return eval_dataframe_1, eval_dataframe_2, eval_dataframe_3

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


demo = gr.Blocks()
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Column():
            with gr.Accordion("📙 Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    elem_id="citation-button",
                ).style(show_copy_button=True)
        with gr.Column():
            with gr.Accordion("✨ CHANGELOG", open=False):
                changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")

    with gr.Tab("Results: Level 1"):
        leaderboard_table_1 = gr.components.Dataframe(
            value=eval_dataframe_1, headers=COLS, datatype=TYPES, interactive=False,
        )
    with gr.Tab("Results: Level 2"):
        leaderboard_table_2 = gr.components.Dataframe(
            value=eval_dataframe_2, headers=COLS, datatype=TYPES, interactive=False,
        )
    with gr.Tab("Results: Level 3"):
        leaderboard_table_3 = gr.components.Dataframe(
            value=eval_dataframe_3, headers=COLS, datatype=TYPES, interactive=False,
        )

    refresh_button = gr.Button("Refresh")
    refresh_button.click(
        refresh,
        inputs=[],
        outputs=[
            leaderboard_table_1,
            leaderboard_table_2,
            leaderboard_table_3,
        ],
    )
    with gr.Accordion("Submit a new model for evaluation"):
        with gr.Row():
            with gr.Column():
                level_of_test = gr.Radio(["Level 1", "Level 2", "Level 3"], value="Level 1", label="{split} set level")
                model_name_textbox = gr.Textbox(label="Model name")
                file_output = gr.File()
            with gr.Column():
                organisation = gr.Textbox(label="Organisation")
                mail = gr.Textbox(label="Contact email")

        submit_button = gr.Button("Submit Eval")
        submission_result = gr.Markdown()
        submit_button.click(
            add_new_eval,
            [
                level_of_test,
                model_name_textbox,
                file_output,
                organisation,
                mail
            ],
            submission_result,
        )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch()