File size: 15,325 Bytes
a231872
 
 
 
 
510d2c1
 
 
 
a231872
8243283
5a68da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a231872
d83c996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a231872
d152ed5
 
d83c996
 
 
5a68da9
d152ed5
5a68da9
d83c996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d152ed5
5a68da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a231872
d83c996
 
 
 
 
 
a231872
5a68da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a231872
 
 
9598ec0
a231872
 
 
 
9598ec0
 
a231872
 
 
 
 
 
 
510d2c1
5a68da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510d2c1
 
 
d83c996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510d2c1
d83c996
 
 
 
 
8243283
d83c996
 
 
 
 
 
 
8243283
510d2c1
8243283
 
 
 
 
 
 
d152ed5
 
8243283
 
 
 
 
 
 
d152ed5
8243283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d83c996
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from django.http import JsonResponse
from rest_framework.decorators import api_view
from rest_framework.response import Response
from rest_framework import serializers
from .engine import execute_prompt, bundle_function, propose_recipes, compute_reduced_prices
from rest_framework.views import APIView
from mistralai import Mistral
import os
import base64
import json
import requests
from openai import OpenAI
from ollama import Client
from django.http import FileResponse
import io

class TTSView(APIView):
    def post(self, request, format=None):
        # Define the API endpoint
        # Define the URL for the TTS API
        url = 'http://localhost:5002/api/tts'

        # Define the multiline text
        text = "This is the first line"

        # Prepare the parameters for the GET request
        params = {
            'text': text
        }

        # Make the GET request
        response = requests.get(url, params=params)

        # Check if the request was successful
        if response.status_code == 200:
            # Save the audio response as a WAV file
            # Create a file-like object with the audio data
            audio_data = io.BytesIO(response.content)

            # Return the audio file as a response
            return FileResponse(audio_data, as_attachment=True, filename='audio_output.wav')
        else:
            return Response({"error": "Failed to synthesize speech"}, status=response.status_code)

class SpeechASRView(APIView):
    def post(self, request, format=None):
        try: 
            data = request.data
            ##prompt =  data['prompt']
            audio = data['audio']

            client = OpenAI(api_key="cant-be-empty", base_url="http://localhost:11800/v1/")

            #filename= '/home/gaganyatri/Music/test1.flac'
            audio_bytes = audio.read()

            #audio_file = open(filename, "rb")

            transcript = client.audio.transcriptions.create(
                model="Systran/faster-distil-whisper-small.en", file=audio_bytes
            )

            #print(transcript.text)
            voice_content = transcript.text
            return Response({"response": voice_content})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)


class SpeechToSpeechView(APIView):
    def post(self, request, format=None):
        try: 
            data = request.data
            ##prompt =  data['prompt']
            audio = data['audio']

            client = OpenAI(api_key="cant-be-empty", base_url="http://localhost:11800/v1/")

            #filename= '/home/gaganyatri/Music/test1.flac'
            audio_bytes = audio.read()

            #audio_file = open(filename, "rb")

            transcript = client.audio.transcriptions.create(
                model="Systran/faster-distil-whisper-small.en", file=audio_bytes
            )

            #print(transcript.text)
            voice_content = transcript.text
                        #content = 'audio recieved'
            system_prompt = "Please summarize the following prompt into a concise and clear statement:"


            model = "mistral-nemo:latest"
            client = Client(host='http://localhost:11434')
            response = client.chat(
            model=model,
            messages=[
                {
                    "role": "system",
                    "content": system_prompt
                },
                {
                    "role": "user",
                    "content": voice_content,
                }
            ],
            )

            # Extract the model's response about the image
            response_text = response['message']['content'].strip()

            url = 'http://localhost:5002/api/tts'

            # Define the multiline text
            #text = "This is the first line"

            # Prepare the parameters for the GET request
            params = {
                'text': response_text
            }

            # Make the GET request
            response = requests.get(url, params=params)

            # Check if the request was successful
            if response.status_code == 200:
                # Save the audio response as a WAV file
                # Create a file-like object with the audio data
                audio_data = io.BytesIO(response.content)

                # Return the audio file as a response
                return FileResponse(audio_data, as_attachment=True, filename='audio_output.wav')
            else:
                return Response({"error": "Failed to synthesize speech"}, status=response.status_code)

        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)

class SpeechLLMView(APIView):
    def post(self, request, format=None):
        try: 
            data = request.data
            ##prompt =  data['prompt']
            audio = data['audio']

            client = OpenAI(api_key="cant-be-empty", base_url="http://localhost:11800/v1/")

            #filename= '/home/gaganyatri/Music/test1.flac'
            audio_bytes = audio.read()

            #audio_file = open(filename, "rb")

            transcript = client.audio.transcriptions.create(
                model="Systran/faster-distil-whisper-small.en", file=audio_bytes
            )

            #print(transcript.text)
            voice_content = transcript.text
                        #content = 'audio recieved'

            model = "mistral-nemo:latest"
            client = Client(host='http://localhost:11434')
            response = client.chat(
            model=model,
            messages=[{
            "role": "user",
            "content": voice_content,
            }],
            )

            # Extract the model's response about the image
            response_text = response['message']['content'].strip()

            return Response({"response": response_text})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)

class TranslateLLMView(APIView):
    def post(self, request, format=None):
        try: 
            data = request.data
            prompt =  data['messages'][0]['prompt']
            # Specify model
            source_language = data['sourceLanguage']
            target_language = data['targetLanguage']
            #model = data['model']
            # Define the messages for the chat
            api_key=os.getenv("SARVAM_API_KEY", "")
            url = "https://api.sarvam.ai/translate"

            payload = {
                "input": prompt,
                "source_language_code": source_language,
                "target_language_code": target_language,
                "speaker_gender": "Male",
                "mode": "formal",
                "model": "mayura:v1",
                "enable_preprocessing": True
            }
            headers = {"Content-Type": "application/json",
                    'API-Subscription-Key': f"{api_key}"
                    }

            response = requests.request("POST", url, json=payload, headers=headers)
            content = response.text
            #print(chat_response.choices[0].message.content)
            # Return the content of the response
            return Response({"response": content})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)

class TextLLMView(APIView):
    def post(self, request, format=None):
        try:
            data = request.data

            isOnline = data['isOnline']

            print(isOnline)
            prompt =  data['messages'][0]['prompt']
            # Specify model
            #model = "pixtral-12b-2409"
            model = data['model']
            # Define the messages for the chat
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt
                        }
                    ]
                }
            ]

            if(isOnline): 
                api_key = os.environ["MISTRAL_API_KEY"]

                # Initialize the Mistral client
                client = Mistral(api_key=api_key)


                # Get the chat response
                chat_response = client.chat.complete(
                    model=model,
                    messages=messages
                )

                content = chat_response.choices[0].message.content
            else:
                content = "helloWorld"

            #print(chat_response.choices[0].message.content)
            # Return the content of the response
            return Response({"response": content})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)

class IndicLLMView(APIView):
    def post(self, request, format=None):
        try:
            data = request.data

            isOnline = data['isOnline']

            print(isOnline)
            prompt =  data['messages'][0]['prompt']
            # Specify model
            #model = "pixtral-12b-2409"
            model = data['model']
            # Define the messages for the chat

            client = Client(host='http://localhost:11434')
            response = client.chat(
            model=model,
            messages=[{
            "role": "user",
            "content": prompt,
            }],
            )

            # Extract the model's response about the image
            response_text = response['message']['content'].strip()

            #print(chat_response.choices[0].message.content)
            # Return the content of the response
            return Response({"response": response_text})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)



@api_view(['GET'])
def recipe_generate_route(request):
    isLocal = False
    try:
        json_objs = compute_reduced_prices()
        obj= json.loads(json_objs)
        bundle_articles = bundle_function(obj[:10])

        result = execute_prompt(propose_recipes(bundle_articles), False)
    except (FileNotFoundError, json.JSONDecodeError) as e:
        return Response({'error': str(e)}, status=500)
    except Exception as e:
        print(f"An error occurred: {e}")
        return Response({'error': 'Something went wrong'}, status=500)
    return Response(result)


class LlamaVisionView(APIView):
    def post(self, request, format=None):
        try:
            data = request.data

            image_data = (data['messages'][0]['image'][0])
            prompt =  data['messages'][0]['prompt']
            # Specify model
            #model = "pixtral-12b-2409"
            model = data['model']
            # Define the messages for the chat

            # Define the messages for the chat

            client = Client(host='http://localhost:21434')
            response = client.chat(
            model="x/llama3.2-vision:latest",
            messages=[{
            "role": "user",
            "content": prompt,
            "images": [image_data]
            }],
            )

            # Extract the model's response about the image
            response_text = response['message']['content'].strip()

            print(response_text)
            content = response_text


            #print(chat_response.choices[0].message.content)
            # Return the content of the response
            return Response({"response": content})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)


class VisionLLMView(APIView):
    def post(self, request, format=None):
        try:
            data = request.data
            api_key = os.environ["MISTRAL_API_KEY"]

            # Initialize the Mistral client
            client = Mistral(api_key=api_key)

            image_data = (data['messages'][0]['image'][0])
            prompt =  data['messages'][0]['prompt']
            # Specify model
            #model = "pixtral-12b-2409"
            model = data['model']
            # Define the messages for the chat
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt
                        },
                        {
                            "type": "image_url",
                            "image_url": f"data:image/jpeg;base64,{image_data}" 
                        }
                    ]
                }
            ]

            # Get the chat response
            chat_response = client.chat.complete(
                model=model,
                messages=messages
            )

            content = chat_response.choices[0].message.content
            #print(chat_response.choices[0].message.content)
            # Return the content of the response
            return Response({"response": content})
        except Exception as e:
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)


class NIMVisionLLMView(APIView):
    def post(self, request, format=None):
        try:
            invoke_url = "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct/chat/completions"
            stream = False
            api_key = os.environ["NIM_API_KEY"]
            data = request.data
            model = data['model']
            print(model)
            image_data = (data['messages'][0]['image'][0])
            prompt =  data['messages'][0]['prompt']
            headers = {
            "Authorization": f"Bearer {api_key}",
            "Accept": "text/event-stream" if stream else "application/json"
            }
            payload = {
            "model": model,
            "messages": [
                {
                "role": "user",
                "content": f'{prompt} <img src="data:image/png;base64,{image_data}" />'
                }
            ],
            "max_tokens": 512,
            "temperature": 1.00,
            "top_p": 1.00,
            "stream": stream
            }
            response = requests.post(invoke_url, headers=headers, json=payload)

            if stream:
                for line in response.iter_lines():
                    if line:
                        #print(line.decode("utf-8"))
                        data = line.decode("utf-8")
                        #content = json.loads(data)['choices'][0]['delta'].get('content', '') 
            else:
                #print(response.json())
                data =  response.json()
                content = data['choices'][0]['message']['content']

                #print(content)
                return Response({"response": content})


        except Exception as e:  # Added general exception handling
            print(f"An error occurred: {e}")
            return Response({'error': 'Something went wrong'}, status=500)