Spaces:
Runtime error
Runtime error
File size: 19,765 Bytes
9d42f47 0681bc6 40bc3ae 1e660fe b97751f b6bed34 10396f5 a51b600 99b2dac 691657e 30eb466 e284b45 64226c2 187bb52 ac05d72 d818c99 171817a 7437ef5 171817a 74e821f ea2c6ba 336121a da6f7d4 8e6d41d 08eb467 168d045 df20fa3 b62e2d9 fae8953 15505de 5686d0a d50b787 87281da 4acf537 027f3d0 a2f8e94 2ad8ac8 9e7288d 6a7186e 4fd5b35 55f1dff 53082d2 22ddb9e 9fc882b 3315012 da1164c f030196 05f01c9 59662d1 05f01c9 0b6db0c 453434f 30f6bdb f9e196a a1bbdbc f9e196a 68248ca 2c57b14 68248ca 3b5d713 ae4f8b6 b3810dd ae4f8b6 b3810dd cd7fa2f 9ed09a4 0015a3c 9ed09a4 43e0847 9ed09a4 6e46269 7002b11 1b559c6 9978534 6e46269 0015a3c 6e46269 056c147 0015a3c 056c147 fafca07 0015a3c fafca07 0015a3c fafca07 0015a3c fafca07 2679662 e8d776b fafca07 2679662 fafca07 2679662 fafca07 2679662 fafca07 2679662 fafca07 8cdbfed fafca07 07c0bde fafca07 cbf3592 dd1727d cf4737f 26d8504 5ecdcfb 26d09e7 d8aa17a 83a1f94 c30637a 0f1daf7 e4c6ec6 b9ee162 c8a440e 4fb639f a88fd83 fafca07 0bc3261 fafca07 7f81350 adf7210 fafca07 df90151 fafca07 5e3ef77 fafca07 bcf1243 fafca07 63f745e fafca07 7010421 ea40e7f fafca07 b48d762 fafca07 25a6cb6 fafca07 5866066 fafca07 c22b8b7 b4f8dd3 bf102c2 8291502 272671c ae6c335 c4b22ed c59f6db 5288717 3744f32 744530a c28c196 7491802 981a6e0 7f493d7 fafca07 96f677f fafca07 16c3afe fafca07 7c59938 fafca07 2757c53 fb1c8a9 ffdf601 116ab57 b974160 3e38b94 f7095dd 502f04f 5ffa1ac 19db832 daf0155 ab10bc6 d7bb16b 2981c19 1cf9cc4 cf02d2a ac42dfa 1875c38 cd07047 d513beb b4a6e7e be8895a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import torch
import pandas as pd
from transformers import (
AdamW,
T5ForConditionalGeneration,
T5TokenizerFast as T5Tokenizer,
MT5Tokenizer,
MT5ForConditionalGeneration,
ByT5Tokenizer,
)
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers import MLFlowLogger, WandbLogger
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning import LightningDataModule
from pytorch_lightning import LightningModule
from datasets import load_metric
from tqdm.auto import tqdm
# from dagshub.pytorch_lightning import DAGsHubLogger
torch.cuda.empty_cache()
pl.seed_everything(42)
class DataModule(Dataset):
"""
Data Module for pytorch
"""
def __init__(
self,
data: pd.DataFrame,
tokenizer: T5Tokenizer,
source_max_token_len: int = 512,
target_max_token_len: int = 512,
):
"""
:param data:
:param tokenizer:
:param source_max_token_len:
:param target_max_token_len:
"""
self.data = data
self.target_max_token_len = target_max_token_len
self.source_max_token_len = source_max_token_len
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, index: int):
data_row = self.data.iloc[index]
input_encoding = self.tokenizer(
data_row["input_text"],
max_length=self.source_max_token_len,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
output_encoding = self.tokenizer(
data_row["output_text"],
max_length=self.target_max_token_len,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
labels = output_encoding["input_ids"]
labels[labels == 0] = -100
return dict(
keywords=data_row["input_text"],
text=data_row["output_text"],
keywords_input_ids=input_encoding["input_ids"].flatten(),
keywords_attention_mask=input_encoding["attention_mask"].flatten(),
labels=labels.flatten(),
labels_attention_mask=output_encoding["attention_mask"].flatten(),
)
class PLDataModule(LightningDataModule):
def __init__(
self,
train_df: pd.DataFrame,
test_df: pd.DataFrame,
tokenizer: T5Tokenizer,
source_max_token_len: int = 512,
target_max_token_len: int = 512,
batch_size: int = 4,
split: float = 0.1,
num_workers: int = 2,
):
"""
:param data_df:
:param tokenizer:
:param source_max_token_len:
:param target_max_token_len:
:param batch_size:
:param split:
"""
super().__init__()
self.train_df = train_df
self.test_df = test_df
self.split = split
self.batch_size = batch_size
self.target_max_token_len = target_max_token_len
self.source_max_token_len = source_max_token_len
self.tokenizer = tokenizer
self.num_workers = num_workers
def setup(self, stage=None):
self.train_dataset = DataModule(
self.train_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len,
)
self.test_dataset = DataModule(
self.test_df,
self.tokenizer,
self.source_max_token_len,
self.target_max_token_len,
)
def train_dataloader(self):
"""training dataloader"""
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
)
def test_dataloader(self):
"""test dataloader"""
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
def val_dataloader(self):
"""validation dataloader"""
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
)
class LightningModel(LightningModule):
"""PyTorch Lightning Model class"""
def __init__(
self,
tokenizer,
model,
learning_rate,
adam_epsilon,
weight_decay,
output: str = "outputs",
):
"""
initiates a PyTorch Lightning Model
Args:
tokenizer : T5 tokenizer
model : T5 model
output (str, optional): output directory to save model checkpoints. Defaults to "outputs".
"""
super().__init__()
self.model = model
self.tokenizer = tokenizer
self.output = output
self.learning_rate = learning_rate
self.adam_epsilon = adam_epsilon
self.weight_decay = weight_decay
def forward(self, input_ids, attention_mask, decoder_attention_mask, labels=None):
"""forward step"""
output = self.model(
input_ids,
attention_mask=attention_mask,
labels=labels,
decoder_attention_mask=decoder_attention_mask,
)
return output.loss, output.logits
def training_step(self, batch, batch_size):
"""training step"""
input_ids = batch["keywords_input_ids"]
attention_mask = batch["keywords_attention_mask"]
labels = batch["labels"]
labels_attention_mask = batch["labels_attention_mask"]
loss, outputs = self(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_attention_mask=labels_attention_mask,
labels=labels,
)
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_size):
"""validation step"""
input_ids = batch["keywords_input_ids"]
attention_mask = batch["keywords_attention_mask"]
labels = batch["labels"]
labels_attention_mask = batch["labels_attention_mask"]
loss, outputs = self(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_attention_mask=labels_attention_mask,
labels=labels,
)
self.log("val_loss", loss, prog_bar=True, logger=True)
return loss
def test_step(self, batch, batch_size):
"""test step"""
input_ids = batch["keywords_input_ids"]
attention_mask = batch["keywords_attention_mask"]
labels = batch["labels"]
labels_attention_mask = batch["labels_attention_mask"]
loss, outputs = self(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_attention_mask=labels_attention_mask,
labels=labels,
)
self.log("test_loss", loss, prog_bar=True, logger=True)
return loss
def configure_optimizers(self):
"""configure optimizers"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": self.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon
)
self.opt = optimizer
return [optimizer]
class Summarization:
"""Custom Summarization class"""
def __init__(self) -> None:
"""initiates Summarization class"""
pass
def from_pretrained(self, model_type="t5", model_name="t5-base") -> None:
"""
loads T5/MT5 Model model for training/finetuning
Args:
model_name (str, optional): exact model architecture name, "t5-base" or "t5-large". Defaults to "t5-base".
:param model_type:
"""
if model_type == "t5":
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_name}")
self.model = T5ForConditionalGeneration.from_pretrained(
f"{model_name}", return_dict=True
)
elif model_type == "mt5":
self.tokenizer = MT5Tokenizer.from_pretrained(f"{model_name}")
self.model = MT5ForConditionalGeneration.from_pretrained(
f"{model_name}", return_dict=True
)
elif model_type == "byt5":
self.tokenizer = ByT5Tokenizer.from_pretrained(f"{model_name}")
self.model = T5ForConditionalGeneration.from_pretrained(
f"{model_name}", return_dict=True
)
def train(
self,
train_df: pd.DataFrame,
eval_df: pd.DataFrame,
source_max_token_len: int = 512,
target_max_token_len: int = 512,
batch_size: int = 8,
max_epochs: int = 5,
use_gpu: bool = True,
outputdir: str = "models",
early_stopping_patience_epochs: int = 0, # 0 to disable early stopping feature
learning_rate: float = 0.0001,
adam_epsilon: float = 0.01,
num_workers: int = 2,
weight_decay: float = 0.0001,
):
"""
trains T5/MT5 model on custom dataset
Args:
train_df (pd.DataFrame): training datarame. Dataframe must have 2 column --> "input_text" and "output_text"
eval_df ([type], optional): validation datarame. Dataframe must have 2 column --> "input_text" and
"output_text"
source_max_token_len (int, optional): max token length of source text. Defaults to 512.
target_max_token_len (int, optional): max token length of target text. Defaults to 512.
batch_size (int, optional): batch size. Defaults to 8.
max_epochs (int, optional): max number of epochs. Defaults to 5.
use_gpu (bool, optional): if True, model uses gpu for training. Defaults to True.
outputdir (str, optional): output directory to save model checkpoints. Defaults to "outputs".
early_stopping_patience_epochs (int, optional): monitors val_loss on epoch end and stops training,
if val_loss does not improve after the specied number of epochs. set 0 to disable early stopping.
Defaults to 0 (disabled)
:param learning_rate:
:param adam_epsilon:
"""
self.target_max_token_len = target_max_token_len
self.data_module = PLDataModule(
train_df,
eval_df,
self.tokenizer,
batch_size=batch_size,
source_max_token_len=source_max_token_len,
target_max_token_len=target_max_token_len,
num_workers=num_workers,
)
self.T5Model = LightningModel(
tokenizer=self.tokenizer,
model=self.model,
output=outputdir,
learning_rate=learning_rate,
adam_epsilon=adam_epsilon,
weight_decay=weight_decay,
)
MLlogger = MLFlowLogger(
experiment_name="Summarization",
tracking_uri="https://dagshub.com/gagan3012/summarization.mlflow",
)
WandLogger = WandbLogger(project="summarization-dagshub")
# logger = DAGsHubLogger(metrics_path='reports/training_metrics.txt')
early_stop_callback = (
[
EarlyStopping(
monitor="val_loss",
min_delta=0.00,
patience=early_stopping_patience_epochs,
verbose=True,
mode="min",
)
]
if early_stopping_patience_epochs > 0
else None
)
gpus = -1 if use_gpu and torch.cuda.is_available() else 0
trainer = Trainer(
logger=[WandLogger, MLlogger],
callbacks=early_stop_callback,
max_epochs=max_epochs,
gpus=gpus,
progress_bar_refresh_rate=5,
)
trainer.fit(self.T5Model, self.data_module)
def load_model(
self, model_type: str = "t5", model_dir: str = "models", use_gpu: bool = False
):
"""
loads a checkpoint for inferencing/prediction
Args:
model_type (str, optional): "t5" or "mt5". Defaults to "t5".
model_dir (str, optional): path to model directory. Defaults to "outputs".
use_gpu (bool, optional): if True, model uses gpu for inferencing/prediction. Defaults to True.
"""
if model_type == "t5":
self.tokenizer = T5Tokenizer.from_pretrained(f"{model_dir}")
self.model = T5ForConditionalGeneration.from_pretrained(
f"{model_dir}", return_dict=True
)
elif model_type == "mt5":
self.tokenizer = MT5Tokenizer.from_pretrained(f"{model_dir}")
self.model = MT5ForConditionalGeneration.from_pretrained(
f"{model_dir}", return_dict=True
)
elif model_type == "byt5":
self.tokenizer = ByT5Tokenizer.from_pretrained(f"{model_dir}")
self.model = T5ForConditionalGeneration.from_pretrained(
f"{model_dir}", return_dict=True
)
if use_gpu:
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
raise Exception(
"exception ---> no gpu found. set use_gpu=False, to use CPU"
)
else:
self.device = torch.device("cpu")
self.model = self.model.to(self.device)
def save_model(self, model_dir="models"):
"""
Save model to dir
:param model_dir:
:return: model is saved
"""
path = f"{model_dir}"
self.tokenizer.save_pretrained(path)
self.model.save_pretrained(path)
def predict(
self,
source_text: str,
max_length: int = 512,
num_return_sequences: int = 1,
num_beams: int = 2,
top_k: int = 50,
top_p: float = 0.95,
do_sample: bool = True,
repetition_penalty: float = 2.5,
length_penalty: float = 1.0,
early_stopping: bool = True,
skip_special_tokens: bool = True,
clean_up_tokenization_spaces: bool = True,
):
"""
generates prediction for T5/MT5 model
Args:
source_text (str): any text for generating predictions
max_length (int, optional): max token length of prediction. Defaults to 512.
num_return_sequences (int, optional): number of predictions to be returned. Defaults to 1.
num_beams (int, optional): number of beams. Defaults to 2.
top_k (int, optional): Defaults to 50.
top_p (float, optional): Defaults to 0.95.
do_sample (bool, optional): Defaults to True.
repetition_penalty (float, optional): Defaults to 2.5.
length_penalty (float, optional): Defaults to 1.0.
early_stopping (bool, optional): Defaults to True.
skip_special_tokens (bool, optional): Defaults to True.
clean_up_tokenization_spaces (bool, optional): Defaults to True.
Returns:
list[str]: returns predictions
"""
input_ids = self.tokenizer.encode(
source_text, return_tensors="pt", add_special_tokens=True
)
input_ids = input_ids.to(self.device)
generated_ids = self.model.generate(
input_ids=input_ids,
num_beams=num_beams,
max_length=max_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
early_stopping=early_stopping,
top_p=top_p,
top_k=top_k,
num_return_sequences=num_return_sequences,
)
preds = self.tokenizer.decode(
generated_ids[0],
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
return preds
def evaluate(self, test_df: pd.DataFrame, metrics: str = "rouge"):
metric = load_metric(metrics)
input_text = test_df["input_text"]
references = test_df["output_text"]
references = references.to_list()
predictions = [self.predict(x) for x in tqdm(input_text)]
results = metric.compute(predictions=predictions, references=references)
output = {
"Rouge_1 Low Precision": results["rouge1"].low.precision,
"Rouge_1 Low recall": results["rouge1"].low.recall,
"Rouge_1 Low F1": results["rouge1"].low.fmeasure,
"Rouge_1 Mid Precision": results["rouge1"].mid.precision,
"Rouge_1 Mid recall": results["rouge1"].mid.recall,
"Rouge_1 Mid F1": results["rouge1"].mid.fmeasure,
"Rouge_1 High Precision": results["rouge1"].high.precision,
"Rouge_1 High recall": results["rouge1"].high.recall,
"Rouge_1 High F1": results["rouge1"].high.fmeasure,
"Rouge_2 Low Precision": results["rouge2"].low.precision,
"Rouge_2 Low recall": results["rouge2"].low.recall,
"Rouge_2 Low F1": results["rouge2"].low.fmeasure,
"Rouge_2 Mid Precision": results["rouge2"].mid.precision,
"Rouge_2 Mid recall": results["rouge2"].mid.recall,
"Rouge_2 Mid F1": results["rouge2"].mid.fmeasure,
"Rouge_2 High Precision": results["rouge2"].high.precision,
"Rouge_2 High recall": results["rouge2"].high.recall,
"Rouge_2 High F1": results["rouge2"].high.fmeasure,
"Rouge_L Low Precision": results["rougeL"].low.precision,
"Rouge_L Low recall": results["rougeL"].low.recall,
"Rouge_L Low F1": results["rougeL"].low.fmeasure,
"Rouge_L Mid Precision": results["rougeL"].mid.precision,
"Rouge_L Mid recall": results["rougeL"].mid.recall,
"Rouge_L Mid F1": results["rougeL"].mid.fmeasure,
"Rouge_L High Precision": results["rougeL"].high.precision,
"Rouge_L High recall": results["rougeL"].high.recall,
"Rouge_L High F1": results["rougeL"].high.fmeasure,
"rougeLsum Low Precision": results["rougeLsum"].low.precision,
"rougeLsum Low recall": results["rougeLsum"].low.recall,
"rougeLsum Low F1": results["rougeLsum"].low.fmeasure,
"rougeLsum Mid Precision": results["rougeLsum"].mid.precision,
"rougeLsum Mid recall": results["rougeLsum"].mid.recall,
"rougeLsum Mid F1": results["rougeLsum"].mid.fmeasure,
"rougeLsum High Precision": results["rougeLsum"].high.precision,
"rougeLsum High recall": results["rougeLsum"].high.recall,
"rougeLsum High F1": results["rougeLsum"].high.fmeasure,
}
return output
|