Spaces:
Runtime error
Runtime error
File size: 3,028 Bytes
5040717 ee5ec15 cd16d6d ee5ec15 796df4b 094e6fb 796df4b bceed7b 7b293fd 7a7137a 6c7dd33 2664f76 6c7dd33 c7647e7 ab3a79c c7647e7 9b7ddc2 c7647e7 26e1e95 aa6f428 c7647e7 f71daf8 43b55c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
Summarization
==============================
T5 Summarisation Using Pytorch Lightning
Instructions
------------
1. Clone the repo.
1. Edit the `params.yml` to change the parameters to train the model.
1. Run `make dirs` to create the missing parts of the directory structure described below.
1. *Optional:* Run `make virtualenv` to create a python virtual environment. Skip if using conda or some other env manager.
1. Run `source env/bin/activate` to activate the virtualenv.
1. Run `make requirements` to install required python packages.
1. Process your data, train and evaluate your model using `make run`
1. When you're happy with the result, commit files (including .dvc files) to git.
Project Organization
------------
├── LICENSE
├── Makefile <- Makefile with commands like `make dirs` or `make clean`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── metrics.txt <- Relevant metrics after evaluating the model.
│ └── training_metrics.txt <- Relevant metrics from training the model.
│
├── requirements.txt <- The requirements file for reproducing the analysis environment
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │ └── process_data.py
│ │
│ ├── models <- Scripts to train models
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │ └── evaluate_model.py
│ │ └── model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
├── tox.ini <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc <- Traing a model on the processed data.
--------
|