Spaces:
Runtime error
Runtime error
File size: 3,283 Bytes
5f2d21a ea6eb55 5f2d21a eb6af5d ea6eb55 eb6af5d ea6eb55 eb6af5d ea6eb55 eb6af5d 8d585eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
from newspaper import Article
from newspaper import Config
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
import re
from bs4 import BeautifulSoup as bs
import requests
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
# Load Model and Tokenize
def get_summary(input_text):
tokenizer = PreTrainedTokenizerFast.from_pretrained("ainize/kobart-news")
summary_model = BartForConditionalGeneration.from_pretrained("ainize/kobart-news")
input_ids = tokenizer.encode(input_text, return_tensors="pt")
summary_text_ids = summary_model.generate(
input_ids=input_ids,
bos_token_id=summary_model.config.bos_token_id,
eos_token_id=summary_model.config.eos_token_id,
length_penalty=2.0,
max_length=142,
min_length=56,
num_beams=4,
)
return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:78.0) Gecko/20100101 Firefox/78.0'
config = Config()
config.browser_user_agent = USER_AGENT
config.request_timeout = 10
class news_collector:
def __init__(self):
self.examples = []
def get_new_parser(self, url):
article = Article(url, language='ko')
article.download()
article.parse()
return article
def get_news_links(self, page=''):
url = "https://news.daum.net/breakingnews/economic"
response = requests.get(url)
html_text = response.text
soup = bs(response.text, 'html.parser')
news_titles = soup.select("a.link_txt")
links = [item.attrs['href'] for item in news_titles ]
https_links = [item for item in links if item.startswith('https') == True]
https_links
return https_links[:2]
def update_news_examples(self):
news_links = self.get_news_links()
for news_url in news_links:
article = self.get_new_parser(news_url)
self.examples.append(get_summary(article.text))
title = "๊ท ํ์กํ ๋ด์ค ์ฝ๊ธฐ (Balanced News Reading)"
with gr.Blocks() as demo:
news = news_collector()
gr.Markdown(
"""
# ๊ท ํ์กํ ๋ด์ค ์ฝ๊ธฐ (Balanced News Reading)
๊ธ์ ์ ์ธ ๊ธฐ์ฌ์ ๋ถ์ ์ ์ธ ๊ธฐ์ฌ์ ๊ท ํ์ ๋ณด๋ฉฐ ๋ด์ค๋ฅผ ์ฝ์ ์ ์์ต๋๋ค. ๋ฐ๋ชจ๋ฅผ ์คํํ๋ฉด ๋ฐ๋ชจ ์คํ ๋ ์ง์ Daum๋ด์ค๋ฅผ `Example`์ ๊ฐ์ ธ์ต๋๋ค.
๋ชจ๋ธ์์ ์ฌ์ฉํ ์ ์๋ ๊ธธ์ด๋ณด๋ค ๊ธด ๊ธฐ์ฌ๊ฐ ์๊ธฐ ๋๋ฌธ์ ๊ธฐ์ฌ๋ด์ฉ์ ์์ฝํ ํ ์์ญ๋ ๋ด์ฉ์ `Example`์ ์ถ๊ฐํฉ๋๋ค.
๋ด์ค๊ธฐ์ฌ๋ฅผ ์ ํํ๊ณ `Submit`๋ฒํผ์ ๋๋ฅด๋ฉด ๊ธฐ์ฌ์ ๊ฐ์ ํ๊ฐ๋ฅผ ํ์ธํ ์ ์์ต๋๋ค.
""")
news.update_news_examples()
gr.load("models/gabrielyang/finance_news_classifier-KR_v7",
inputs = gr.Textbox( placeholder="๋ด์ค ๊ธฐ์ฌ ๋ด์ฉ์ ์
๋ ฅํ์ธ์." ),
examples=news.examples)
# gr.Examples(
# examples=[
# ["images/demo1.jpg"],
# ["images/demo2.jpg"],
# ["images/demo4.jpg"],
# ],
if __name__ == "__main__":
demo.launch() |