File size: 10,096 Bytes
b72e09b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np

import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.cuda.amp import custom_bwd, custom_fwd 

try:
    import _gridencoder as _backend
except ImportError:
    from .backend import _backend

_gridtype_to_id = {
    'hash': 0,
    'tiled': 1,
}

class _grid_encode(Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, inputs, embeddings, offsets, per_level_scale, base_resolution, calc_grad_inputs=False, gridtype=0, align_corners=False):
        # inputs: [B, D], float in [0, 1]
        # embeddings: [sO, C], float
        # offsets: [L + 1], int
        # RETURN: [B, F], float

        inputs = inputs.contiguous()

        B, D = inputs.shape # batch size, coord dim
        L = offsets.shape[0] - 1 # level
        C = embeddings.shape[1] # embedding dim for each level
        S = np.log2(per_level_scale) # resolution multiplier at each level, apply log2 for later CUDA exp2f
        H = base_resolution # base resolution

        # manually handle autocast (only use half precision embeddings, inputs must be float for enough precision)
        # if C % 2 != 0, force float, since half for atomicAdd is very slow.
        if torch.is_autocast_enabled() and C % 2 == 0:
            embeddings = embeddings.to(torch.half)

        # L first, optimize cache for cuda kernel, but needs an extra permute later
        outputs = torch.empty(L, B, C, device=inputs.device, dtype=embeddings.dtype)

        if calc_grad_inputs:
            dy_dx = torch.empty(B, L * D * C, device=inputs.device, dtype=embeddings.dtype)
        else:
            dy_dx = torch.empty(1, device=inputs.device, dtype=embeddings.dtype) # placeholder... TODO: a better way?

        _backend.grid_encode_forward(inputs, embeddings, offsets, outputs, B, D, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners)

        # permute back to [B, L * C]
        outputs = outputs.permute(1, 0, 2).reshape(B, L * C)

        ctx.save_for_backward(inputs, embeddings, offsets, dy_dx)
        ctx.dims = [B, D, C, L, S, H, gridtype]
        ctx.calc_grad_inputs = calc_grad_inputs
        ctx.align_corners = align_corners

        return outputs
    
    @staticmethod
    #@once_differentiable
    @custom_bwd
    def backward(ctx, grad):

        inputs, embeddings, offsets, dy_dx = ctx.saved_tensors
        B, D, C, L, S, H, gridtype = ctx.dims
        calc_grad_inputs = ctx.calc_grad_inputs
        align_corners = ctx.align_corners

        # grad: [B, L * C] --> [L, B, C]
        grad = grad.view(B, L, C).permute(1, 0, 2).contiguous()

        grad_embeddings = torch.zeros_like(embeddings)

        if calc_grad_inputs:
            grad_inputs = torch.zeros_like(inputs, dtype=embeddings.dtype)
        else:
            grad_inputs = torch.zeros(1, device=inputs.device, dtype=embeddings.dtype)

        _backend.grid_encode_backward(grad, inputs, embeddings, offsets, grad_embeddings, B, D, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners)

        if calc_grad_inputs:
            grad_inputs = grad_inputs.to(inputs.dtype)
            return grad_inputs, grad_embeddings, None, None, None, None, None, None
        else:
            return None, grad_embeddings, None, None, None, None, None, None


grid_encode = _grid_encode.apply


class GridEncoder(nn.Module):
    def __init__(self, input_dim=3, num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=None, gridtype='hash', align_corners=False):
        super().__init__()

        # the finest resolution desired at the last level, if provided, overridee per_level_scale
        if desired_resolution is not None:
            per_level_scale = np.exp2(np.log2(desired_resolution / base_resolution) / (num_levels - 1))

        self.input_dim = input_dim # coord dims, 2 or 3
        self.num_levels = num_levels # num levels, each level multiply resolution by 2
        self.level_dim = level_dim # encode channels per level
        self.per_level_scale = per_level_scale # multiply resolution by this scale at each level.
        self.log2_hashmap_size = log2_hashmap_size
        self.base_resolution = base_resolution
        self.output_dim = num_levels * level_dim
        self.gridtype = gridtype
        self.gridtype_id = _gridtype_to_id[gridtype] # "tiled" or "hash"
        self.align_corners = align_corners

        # allocate parameters
        offsets = []
        offset = 0
        self.max_params = 2 ** log2_hashmap_size
        for i in range(num_levels):
            resolution = int(np.ceil(base_resolution * per_level_scale ** i))
            params_in_level = min(self.max_params, (resolution if align_corners else resolution + 1) ** input_dim) # limit max number
            params_in_level = int(np.ceil(params_in_level / 8) * 8) # make divisible
            offsets.append(offset)
            offset += params_in_level
        offsets.append(offset)
        offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
        self.register_buffer('offsets', offsets)
        
        self.n_params = offsets[-1] * level_dim

        # parameters
        self.embeddings = nn.Parameter(torch.empty(offset, level_dim))

        self.reset_parameters()
    
    def reset_parameters(self):
        std = 1e-4
        self.embeddings.data.uniform_(-std, std)

    def __repr__(self):
        return f"GridEncoder: input_dim={self.input_dim} num_levels={self.num_levels} level_dim={self.level_dim} resolution={self.base_resolution} -> {int(round(self.base_resolution * self.per_level_scale ** (self.num_levels - 1)))} per_level_scale={self.per_level_scale:.4f} params={tuple(self.embeddings.shape)} gridtype={self.gridtype} align_corners={self.align_corners}"
    
    def forward(self, inputs, bound=1):
        # inputs: [..., input_dim], normalized real world positions in [-bound, bound]
        # return: [..., num_levels * level_dim]

        inputs = (inputs + bound) / (2 * bound) # map to [0, 1]
        
        #print('inputs', inputs.shape, inputs.dtype, inputs.min().item(), inputs.max().item())

        prefix_shape = list(inputs.shape[:-1])
        inputs = inputs.view(-1, self.input_dim)

        outputs = grid_encode(inputs, self.embeddings, self.offsets, self.per_level_scale, self.base_resolution, inputs.requires_grad, self.gridtype_id, self.align_corners)
        outputs = outputs.view(prefix_shape + [self.output_dim])

        #print('outputs', outputs.shape, outputs.dtype, outputs.min().item(), outputs.max().item())

        return outputs

class VarGridEncoder(nn.Module):
    def __init__(self, input_dim=3, num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=None, gridtype='hash', align_corners=False, hash_entries=None):
        super().__init__()

        # the finest resolution desired at the last level, if provided, overridee per_level_scale
        if desired_resolution is not None:
            per_level_scale = np.exp2(np.log2(desired_resolution / base_resolution) / (num_levels - 1))

        self.input_dim = input_dim # coord dims, 2 or 3
        self.num_levels = num_levels # num levels, each level multiply resolution by 2
        self.level_dim = level_dim # encode channels per level
        self.per_level_scale = per_level_scale # multiply resolution by this scale at each level.
        self.log2_hashmap_size = log2_hashmap_size
        self.base_resolution = base_resolution
        self.output_dim = num_levels * level_dim
        self.gridtype = gridtype
        self.gridtype_id = _gridtype_to_id[gridtype] # "tiled" or "hash"
        self.align_corners = align_corners

        # allocate parameters
        offsets = []
        offset = 0
        self.max_params = 2 ** log2_hashmap_size
        for i in range(num_levels):
            resolution = int(np.ceil(base_resolution * per_level_scale ** i))
            params_in_level = min(self.max_params, (resolution if align_corners else resolution + 1) ** input_dim) # limit max number
            params_in_level = int(np.ceil(params_in_level / 8) * 8) # make divisible
            offsets.append(offset)
            offset += params_in_level
        offsets.append(offset)
        offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
        self.register_buffer('offsets', offsets)
        
        self.n_params = offsets[-1] * level_dim
        self.level_dim = level_dim
        self.offset = offset

        # parameters
        self.embeddings = nn.Parameter(torch.empty(offset - hash_entries, level_dim))

        self.reset_parameters()
    
    def reset_parameters(self):
        std = 1e-4
        self.embeddings.data.uniform_(-std, std)

    def __repr__(self):
        return f"GridEncoder: input_dim={self.input_dim} num_levels={self.num_levels} level_dim={self.level_dim} resolution={self.base_resolution} -> {int(round(self.base_resolution * self.per_level_scale ** (self.num_levels - 1)))} per_level_scale={self.per_level_scale:.4f} params={tuple(self.embeddings.shape)} gridtype={self.gridtype} align_corners={self.align_corners}"
    
    def forward(self, inputs, embeddings, bound=1):
        # inputs: [..., input_dim], normalized real world positions in [-bound, bound]
        # return: [..., num_levels * level_dim]
        input_embeddings = torch.cat([embeddings, self.embeddings], dim=0)

        inputs = (inputs + bound) / (2 * bound) # map to [0, 1]
        
        #print('inputs', inputs.shape, inputs.dtype, inputs.min().item(), inputs.max().item())

        prefix_shape = list(inputs.shape[:-1])
        inputs = inputs.view(-1, self.input_dim)

        outputs = grid_encode(inputs, input_embeddings, self.offsets, self.per_level_scale, self.base_resolution, inputs.requires_grad, self.gridtype_id, self.align_corners)
        outputs = outputs.view(prefix_shape + [self.output_dim])

        #print('outputs', outputs.shape, outputs.dtype, outputs.min().item(), outputs.max().item())

        return outputs