Spaces:
Sleeping
Sleeping
File size: 7,102 Bytes
056bbdc 817c072 056bbdc 9221f9f 8bbc0a2 9221f9f 8bbc0a2 9221f9f 8bbc0a2 9221f9f 8bbc0a2 9221f9f 8bbc0a2 9221f9f 8bbc0a2 9221f9f 8bbc0a2 9221f9f 817c072 056bbdc 817c072 056bbdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import inseq
import captum
import torch
import os
# import nltk
import argparse
import random
import numpy as np
import pandas as pd
from argparse import Namespace
from tqdm.notebook import tqdm
from torch.utils.data import DataLoader
from functools import partial
from transformers import AutoTokenizer, MarianTokenizer, AutoModel, AutoModelForSeq2SeqLM, MarianMTModel
from bertviz import model_view, head_view
from bertviz_gradio import head_view_mod
model_es = "Helsinki-NLP/opus-mt-en-es"
model_fr = "Helsinki-NLP/opus-mt-en-fr"
model_zh = "Helsinki-NLP/opus-mt-en-zh"
model_sw = "Helsinki-NLP/opus-mt-en-sw"
tokenizer_es = AutoTokenizer.from_pretrained(model_es)
tokenizer_fr = AutoTokenizer.from_pretrained(model_fr)
tokenizer_zh = AutoTokenizer.from_pretrained(model_zh)
tokenizer_sw = AutoTokenizer.from_pretrained(model_sw)
model_tr_es = MarianMTModel.from_pretrained(model_es)
model_tr_fr = MarianMTModel.from_pretrained(model_fr)
model_tr_zh = MarianMTModel.from_pretrained(model_zh)
model_tr_sw = MarianMTModel.from_pretrained(model_sw)
model_es = inseq.load_model("Helsinki-NLP/opus-mt-en-es", "input_x_gradient")
model_fr = inseq.load_model("Helsinki-NLP/opus-mt-en-fr", "input_x_gradient")
model_zh = inseq.load_model("Helsinki-NLP/opus-mt-en-zh", "input_x_gradient")
model_sw = inseq.load_model("Helsinki-NLP/opus-mt-en-sw", "input_x_gradient")
dict_models = {
'en-es': model_es,
'en-fr': model_fr,
'en-zh': model_zh,
'en-sw': model_sw,
}
dict_models_tr = {
'en-es': model_tr_es,
'en-fr': model_tr_fr,
'en-zh': model_tr_zh,
'en-sw': model_tr_sw,
}
dict_tokenizer_tr = {
'en-es': tokenizer_es,
'en-fr': tokenizer_fr,
'en-zh': tokenizer_zh,
'en-sw': tokenizer_sw,
}
saliency_examples = [
"Peace of Mind: Protection for consumers.",
"The sustainable development goals report: towards a rescue plan for people and planet",
"We will leave no stone unturned to hold those responsible to account.",
"The clock is now ticking on our work to finalise the remaining key legislative proposals presented by this Commission to ensure that citizens and businesses can reap the benefits of our policy actions.",
"Pumpkins, squash and gourds, fresh or chilled, excluding courgettes",
"The labour market participation of mothers with infants has even deteriorated over the past two decades, often impacting their career and incomes for years.",
]
contrastive_examples = [
["Peace of Mind: Protection for consumers.",
"Paz mental: protección de los consumidores",
"Paz de la mente: protección de los consumidores"],
["the slaughterer has finished his work.",
"l'abatteur a terminé son travail.",
"l'abatteuse a terminé son travail."],
['A fundamental shift is needed - in commitment, solidarity, financing and action - to put the world on a better path.',
'需要在承诺、团结、筹资和行动方面进行根本转变,使世界走上更美好的道路。',
'我们需要从根本上转变承诺、团结、资助和行动,使世界走上更美好的道路。',]
]
#Load challenge set examples
df_challenge_set = pd.read_csv("challenge_sets.csv")
arr_challenge_set = df_challenge_set.values
arr_challenge_set = [[x[2], x[3], x[4], x[5]] for x in arr_challenge_set]
def get_bertvis_data(input_text, lg_model):
tokenizer_tr = dict_tokenizer_tr[lg_model]
model_tr = dict_models_tr[lg_model]
input_ids = tokenizer_tr(input_text, return_tensors="pt", padding=True)
result_att = model_tr.generate(**input_ids,
return_dict_in_generate=True,
output_attentions =True,
output_scores=True,
)
# tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0])
# tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0])
tgt_text = tokenizer_tr.decode(result_att.sequences[0], skip_special_tokens=True)
print(tgt_text)
outputs = model_tr(input_ids=input_ids.input_ids,
decoder_input_ids=result_att.sequences,
output_attentions =True,
)
print(tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0]))
# print(tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0]), tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0]))
html_attentions = head_view_mod(
encoder_attention = outputs.encoder_attentions,
cross_attention = outputs.cross_attentions,
decoder_attention = outputs.decoder_attentions,
encoder_tokens = tokenizer_tr.convert_ids_to_tokens(input_ids.input_ids[0]),
decoder_tokens = tokenizer_tr.convert_ids_to_tokens(result_att.sequences[0]),
html_action='gradio'
)
return html_attentions, tgt_text
## First create html and divs
html = """
<html>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.0/jquery.min"></script>
<script async data-require="d3@3.5.3" data-semver="3.5.3" src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.js"></script>
<body>
<div id="bertviz"></div>
<div id="d3_beam_search"></div>
</body>
</html>
"""
def sentence_maker(w1, model, var2={}):
#translate and get internal values
params,tgt = get_bertvis_data(w1, model)
### get translation
return [tgt, params['params'],params['html2'].data]
def sentence_maker2(w1,j2):
# json_value = {'one':1}
# return f"{w1['two']} in sentence22..."
print(w1,j2)
return "in sentence22..."
with gr.Blocks(js="plotsjs_bertviz.js") as demo:
gr.Markdown("""
# MAKE NMT Workshop \t `BertViz` \n
https://github.com/jessevig/bertviz
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### Translate
""")
in_text = gr.Textbox(label="Source Text")
out_text = gr.Textbox(label="Target Text")
out_text2 = gr.Textbox(visible=False)
var2 = gr.JSON(visible=False)
with gr.Column(scale=1):
gr.Markdown(
"""
### If challenge is selected from the challenge set list bellow
""")
challenge_ex = gr.Textbox(label="Challenge", interactive=False)
category_minor = gr.Textbox(label="category_minor", interactive=False)
category_major = gr.Textbox(label="category_major", interactive=False)
with gr.Accordion("Challenge selection:",open=False):
gr.Examples(arr_challenge_set,[in_text, challenge_ex,category_minor,category_major], label="")
radio_c = gr.Radio(choices=['en-zh', 'en-es', 'en-fr', 'en-sw'], value="en-zh", label= '', container=False)
btn = gr.Button("Translate")
with gr.Column(scale=2):
gr.Markdown("Attentions: ")
input_mic = gr.HTML(html)
out_html = gr.HTML()
btn.click(sentence_maker, [in_text,radio_c], [out_text,var2,out_html], js="(in_text,radio_c) => testFn_out(in_text,radio_c)") #should return an output comp.
out_text.change(sentence_maker2, [out_text, var2], out_text2, js="(out_text,var2) => testFn_out_json(var2)") #
# out_text.change(sentence_maker2, [out_text, var2], out_text2, js="(out_text,var2) => testFn_out_json(var2)") #
# run script function on load,
# demo.load(None,None,None,js="plotsjs.js")
if __name__ == "__main__":
demo.launch() |