Spaces:
Running
Running
File size: 26,605 Bytes
d07b421 5c8369d d07b421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import numpy as np
from openai import OpenAI
import os
import tiktoken
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # use gpt3.5 tokenizer for token number controlling, so we don't need to load the actual tokenizer for API models
NUM_LOGPROBS = {
'top_prob': 1,
}
MODEL_MAPPING = {
"Llama-2-70B": "meta-llama/Llama-2-70b-hf",
"Mistral-7B-v0.1": "mistralai/Mistral-7B-v0.1",
"Mixtral-8x7B-v0.1": "mistralai/Mixtral-8x7B-v0.1",
# Nudging models below
"Mistral-7B-v0.1-Instruct": "mistralai/Mistral-7B-Instruct-v0.1",
"Llama-2-13B-chat": "meta-llama/Llama-2-13b-chat-hf",
"Gemma-2-2B-it": "google/gemma-2b-it",
}
def apply_instruct_template(model_name, system_prompt, instruct_prompt, response_prompt, add_bos=False):
model_name = model_name.lower()
# print(model_name)
if "chat" in model_name and "llama" in model_name and "2" in model_name:
return llama_2_chat_template(system_prompt=system_prompt, instruct_prompt=instruct_prompt, response_prompt=response_prompt, add_bos=add_bos)
elif "instruct" in model_name and "llama" in model_name and "3" in model_name:
if "3.1" in model_name: # for llama-3.1 models, add knowledge cut in system prompmt
return llama_3_instruct_template(system_prompt=system_prompt, instruct_prompt=instruct_prompt, response_prompt=response_prompt, add_bos=add_bos, add_knowledge_cut=True)
else:
return llama_3_instruct_template(system_prompt=system_prompt, instruct_prompt=instruct_prompt, response_prompt=response_prompt, add_bos=add_bos)
elif "it" in model_name and "gemma" in model_name:
return gemma_instruct_template(system_prompt=system_prompt, instruct_prompt=instruct_prompt, response_prompt=response_prompt, add_bos=add_bos)
elif "instruct" in model_name and "olmo" in model_name:
return olmo_instruct_template(system_prompt=system_prompt, instruct_prompt=instruct_prompt, response_prompt=response_prompt, add_bos=add_bos)
elif "instruct" in model_name and "mistral" in model_name:
return mistral_instruct_template(system_prompt=system_prompt, instruct_prompt=instruct_prompt, response_prompt=response_prompt, add_bos=True)
else:
return f"{system_prompt}\n{instruct_prompt}\n{response_prompt}" # non-instruct model or models with unknown template
def mistral_instruct_template(system_prompt, instruct_prompt, response_prompt, add_bos=True):
"""
Convert the input and output into the template used for the mistral instruct models training.
"""
prefix = "<s>" if add_bos else ""
return prefix + f"[INST] {system_prompt}\n{instruct_prompt} [/INST] {response_prompt}"
def llama_2_chat_template(system_prompt, instruct_prompt, response_prompt, add_bos=False):
"""
Convert the input and output into the template used for the llama-2 chat models training.
"""
prefix = "<s>" if add_bos else ""
return prefix + f"[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{instruct_prompt} [/INST] {response_prompt.lstrip()}" # for most servers that add <s> automatically so we don't need to add it here
def llama_3_instruct_template(system_prompt, instruct_prompt, response_prompt, add_bos=False, add_knowledge_cut=False):
"""
Convert the input and output into the template used for the llama-3 instruct models training.
"""
# print("applying llama-3 instruct template")
prefix = "<|begin_of_text|>" if add_bos else ""
if add_knowledge_cut:
system_prompt = f"Cutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024\n\n"+ system_prompt
return prefix + f"<|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{instruct_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n{response_prompt}"
def gemma_instruct_template(system_prompt, instruct_prompt, response_prompt, add_bos=False):
"""
Convert the input and output into the template used for the gemma instruct models training.
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
"""
prefix = "<bos>" if add_bos else ""
return prefix + f"<start_of_turn>user\n{system_prompt}\n{instruct_prompt}<end_of_turn>\n<start_of_turn>model\n{response_prompt}"
def olmo_instruct_template(system_prompt, instruct_prompt, response_prompt, add_bos=False):
"""
Convert the input and output into the template used for the olmo instruct models training.
"""
return f"<|endoftext|><|user|>\n{system_prompt}\n{instruct_prompt}\n<|assistant|>\n{response_prompt}"
def find_longest_repeated_suffix(s):
# Helper function to check if a substring repeats
def has_repeated(s, length):
if length < 30:
return False
# Extract the suffix of length 'length'
suffix = s[-length:]
# Check the rest of the string for another occurrence
# return s[:-length].find(suffix) != -1
return s[:-length].endswith(suffix)
left, right = 0, len(s)
result = 0
# Binary search for the longest repeated suffix
while left <= right:
mid = (left + right) // 2
if has_repeated(s, mid):
result = mid # Store the longest length found
left = mid + 1 # Try for a longer suffix
else:
right = mid - 1 # Try for a shorter suffix
# Return the longest repeated suffix
if result > 0:
return s[-result:]
return None # Return an empty string if no repetition is found
def remove_redundant_repetitions(s):
s = s.strip()
# Find the longest repeated suffix
longest_repeated_suffix = find_longest_repeated_suffix(s)
while longest_repeated_suffix:
# Remove the longest repeated suffix
s = s[:-len(longest_repeated_suffix)]
# Find the longest repeated suffix again
longest_repeated_suffix = find_longest_repeated_suffix(s)
return s
def repetition_check(new_completion, full_prefix, subseq_len=5):
words = new_completion.split(" ")
if len(words) > subseq_len and new_completion in full_prefix:
return True
return False
def convert_token_logprobs_to_top_logprobs(token_logprobs, tokens):
"""
Together AI now only returns token logprobs, this function converts token logprobs to top logprobs format: {token: logprob}
"""
top_logprobs = [{token: logprob} for token, logprob in zip(tokens, token_logprobs)]
return top_logprobs
def check_need_nudging(nudging_method,
base_token_id,
current_base_info,
thresholds,
):
if nudging_method == 'top_prob':
# check if the token prob is below the threshold
sorted_base_top_logprobs = {k: v for k, v in sorted(current_base_info["top_logprobs"][base_token_id].items(), key=lambda item: item[1], reverse=True)}
base_top_prob = np.exp(list(sorted_base_top_logprobs.values())[0])
need_nudging = base_top_prob < thresholds['top_prob']
else:
raise ValueError(f"Unknown nudging method {nudging_method}")
return need_nudging
def complete_with_base(nudging_method='top_prob',
base_model="davinci-002",
full_prefix_base="",
output="",
current_base_info=None,
max_completion_token=256,
completion_token_num=16,
client_base=None,
thresholds=None,
temperature=0.0,
top_p=0.9,
):
completion_base = "" if len(current_base_info["completion"]) == 0 else current_base_info["tokens"][0] # accept the first token from the 1st round which is the acc token from the first stage
completion_all = "" if len(current_base_info["completion"]) == 0 else current_base_info["tokens"][0] # completion_all records all the tokens from the base model including the tokens that are not accepted in the last round, for debugging and visualization
found_nudging_token = False
response = None
has_acc_token_stage_1 = True if len(current_base_info["completion"]) > 0 else False # if the current_base_info["completion"] is not empty, it means the first token in base completion is accepted from the 1st stage
EMPTY_INFO_DICT = {
"completion": "",
"tokens": [],
"top_logprobs": [],
"stop_reason": None,
"num_logprobs": NUM_LOGPROBS[nudging_method],
}
next_nudging_info = EMPTY_INFO_DICT # for nudging methods that compute nudging info during base completion, we can save the info for the next round, currently not used for top_prob nudging
while len(encoding.encode(completion_base)) < max_completion_token and not found_nudging_token:
if current_base_info["completion"] == "":
# complete the sentence using the base model
response = client_base.completions.create(
model=base_model,
prompt=full_prefix_base + output + completion_base,
max_tokens=completion_token_num,
temperature=temperature,
logprobs=current_base_info["num_logprobs"],
top_p=top_p,
)
current_base_info["tokens"] = response.choices[0].logprobs.tokens
current_base_info["top_logprobs"] = response.choices[0].logprobs.top_logprobs
if current_base_info["top_logprobs"] is None:
current_base_info["top_logprobs"] = convert_token_logprobs_to_top_logprobs(response.choices[0].logprobs.token_logprobs, current_base_info["tokens"])
current_base_info["completion"] = response.choices[0].text
if has_acc_token_stage_1:
# pop the first token from the 1st round as it is already accepted from stage 1
current_base_info["tokens"] = current_base_info["tokens"][1:]
current_base_info["top_logprobs"] = current_base_info["top_logprobs"][1:]
current_base_info["completion"] = "".join(current_base_info["tokens"])
has_acc_token_stage_1 = False
completion = current_base_info["completion"]
tokens = current_base_info["tokens"]
if completion in completion_base:
break # repeated completion, break
nudging_position = -1
# find the first token that violates the nudging criteria
for base_idx in range(len(tokens)):
found_nudging_token = check_need_nudging(nudging_method=nudging_method, base_token_id=base_idx, current_base_info=current_base_info, thresholds=thresholds)
if found_nudging_token:
nudging_position = base_idx
break
if nudging_position == -1:
new_completion= "".join(tokens)
else:
new_completion = "".join(tokens[:nudging_position]) # include the last agreed token
# avoid repetition in answer
if repetition_check(new_completion, output + completion_base):
break
else:
completion_base += new_completion
if found_nudging_token: # if found the nudging token, break the loop, concat the last base completion to completion_all
completion_all += completion
else:
completion_all += new_completion
next_nudging_info = EMPTY_INFO_DICT
if response is not None and response.choices[0].finish_reason == "stop":
break
# reset the current_base_info
current_base_info['completion'] = ""
current_base_info['tokens'] = []
current_base_info['top_logprobs'] = []
return completion_base, completion_all, next_nudging_info
def completion_with_nudging(
base_model="davinci-002",
nudging_model="gpt-3.5-turbo",
system_prompt_base="Answer the question by walking through the reasoning step by step.",
system_prompt_nudging="Answer the question by walking through the reasoning step by step.",
question="",
context="",
question_prompt="Question: ",
answer_start_prompt_base="Answer: ",
answer_start_prompt_nudging="Answer: ",
completion_token_num=16,
completion_token_num_nudging=16,
max_token_total=256,
print_intermediate_output=False,
client=None, # default client
client_base=None,
client_nudging=None,
max_round=150,
nudging_temperature=0.0, # deterministic for nudging
base_temperature=0.0, # deterministic for base model
nudging_method='top_prob',
top_prob_thres=0.3,
top_p=0.9,
):
if client_base is None:
client_base = client
if client_nudging is None:
client_nudging = client
if nudging_method not in NUM_LOGPROBS.keys():
raise ValueError(f"nudging method {nudging_method} number of logprobs not defined")
full_prefix_base = apply_instruct_template(base_model, system_prompt_base, context + question_prompt + question, answer_start_prompt_base) # for base model this function just adds newlines
full_prefix_nudging = apply_instruct_template(nudging_model, system_prompt_nudging, context + question_prompt + question, answer_start_prompt_nudging)
thresholds = {
'top_prob': top_prob_thres,
}
output = ""
nudging_round = 0
all_nudging_words = []
all_nudging_and_completions = []
current_nudging_info = {
"completion": "",
"tokens": [],
"top_logprobs": [],
"stop_reason": None,
"num_logprobs": NUM_LOGPROBS[nudging_method],
}
stop_reason = None
repeat_nudging_word = 0
last_nudging_word = ""
while len(encoding.encode(output)) < max_token_total and nudging_round < max_round: # use the number of gpt-3.5 token to approximately control the length
nudging_round += 1
if current_nudging_info["completion"] == "":
response = client_nudging.completions.create(
model=nudging_model,
prompt=full_prefix_nudging + output,
max_tokens=completion_token_num_nudging,
temperature=nudging_temperature,
logprobs=current_nudging_info["num_logprobs"],
)
current_nudging_info["completion"] = response.choices[0].text
current_nudging_info["tokens"] = response.choices[0].logprobs.tokens
current_nudging_info["top_logprobs"] = response.choices[0].logprobs.top_logprobs
if current_nudging_info["top_logprobs"] is None:
current_nudging_info["top_logprobs"] = convert_token_logprobs_to_top_logprobs(response.choices[0].logprobs.token_logprobs, current_nudging_info["tokens"])
current_nudging_info["stop_reason"] = response.choices[0].finish_reason
# if finish_reason is stop, break the loop, also handles nudging completion from previous round
if current_nudging_info["stop_reason"] == "stop":
stop_reason = "nudging_model_stop"
if len(current_nudging_info["completion"]) > 0:
all_nudging_words.append(current_nudging_info["completion"])
all_nudging_and_completions.append(current_nudging_info["completion"])
output += current_nudging_info["completion"]
break
# ===================================================================
# Stage 1: use base model to find the first token that violates the nudging criteria (no need to nudge)
# ===================================================================
found_acc_token = False
current_base_info = { # will be passed to the next stage
"completion": "",
"tokens": [],
"top_logprobs": [],
"num_logprobs": NUM_LOGPROBS[nudging_method],
}
nudging_text = current_nudging_info["completion"]
num_whitespaces = len(nudging_text) - len(nudging_text.lstrip(" "))
space_prefix = " " * num_whitespaces
current_nudging_words = nudging_text.lstrip(" ").split(" ") # token leads to some unexpected behaviors, still use nudging word
nudging_word_id = 0 if len(current_nudging_words) > 1 else 1 # if only one word, always accept the word and go to the next round: it won't go into the loop and found_acc_token will be False
while not found_acc_token and nudging_word_id < len(current_nudging_words) - 1:
nudging_word_id += 1 # always accept the first word
nudging_gen_prefix = space_prefix + " ".join(current_nudging_words[:nudging_word_id])
current_nudging_word = " " + current_nudging_words[nudging_word_id] # add a leading space to the current nudging word since the nudging words a split by space
if current_nudging_word == " ": # skip the multiple space
continue
prefix = full_prefix_base + output + nudging_gen_prefix
response = client_base.completions.create(
model=base_model,
prompt=prefix,
max_tokens=completion_token_num,
temperature=base_temperature,
logprobs=current_base_info["num_logprobs"],
top_p=top_p,
)
current_base_info["tokens"] = response.choices[0].logprobs.tokens
current_base_info["top_logprobs"] = response.choices[0].logprobs.top_logprobs
if current_base_info["top_logprobs"] is None:
current_base_info["top_logprobs"] = convert_token_logprobs_to_top_logprobs(response.choices[0].logprobs.token_logprobs, current_base_info["tokens"])
current_base_info["completion"] = response.choices[0].text
# look for the first token that meets the nudging criteria
first_base_token = current_base_info["tokens"][0]
if current_nudging_word.startswith(first_base_token): # check if the current nudging word is the same or starts with the first base token
found_acc_token = True
else:
found_acc_token = not check_need_nudging(nudging_method, # check if the token violates the nudging criteria (no need to nudge)
base_token_id=0,
current_base_info=current_base_info,
thresholds=thresholds)
# here we have either prefix_idx == len(current_nudging_info["tokens"]): if no token meets the nudging criteria, use the current nudging completion
# or found_acc_token == True: if a token violates the nudging criteria, we use the prefix as nudging tokens
nudging_words = space_prefix + " ".join(current_nudging_words[:nudging_word_id])
# Heuristic: if the nudging words are the same as the last one for three rounds, break the loop
if nudging_words == last_nudging_word:
repeat_nudging_word += 1
if repeat_nudging_word >= 3:
stop_reason = "repeated_nudging_words"
break
else:
last_nudging_word = nudging_words
repeat_nudging_word = 0
all_nudging_words.append(nudging_words)
output += nudging_words
if not found_acc_token: # if no base token can be accepted, use the current nudging completion and go to the next round
all_nudging_and_completions.append(nudging_words)
# reset the current nudging info and continue to the next round
current_nudging_info = {
"completion": "",
"tokens": [],
"logprobs": [],
"stop_reason": None,
"num_logprobs": NUM_LOGPROBS[nudging_method],
}
continue
if current_base_info["completion"] == "": # the base model thinks the completion is done, go to the next round. Make sure current_base_info["completion"] is not empty if proceed to the next stage
all_nudging_and_completions.append(nudging_words)
current_nudging_info = {
"completion": "",
"tokens": [],
"logprobs": [],
"stop_reason": None,
"num_logprobs": NUM_LOGPROBS[nudging_method],
}
continue
# ===================================================================
# Stage 2: use nudging model to find the first token that meets the nudging criteria (need to nudge)
# ===================================================================
max_completion_token = max_token_total - len(encoding.encode(output))
completion_base, completion_base_all, current_nudging_info = complete_with_base(nudging_method=nudging_method,
base_model=base_model,
full_prefix_base=full_prefix_base,
output=output,
current_base_info=current_base_info,
max_completion_token=max_completion_token,
completion_token_num=completion_token_num,
client_base=client_base,
thresholds=thresholds,
temperature=base_temperature,
top_p=top_p,
)
# print(f"next_nudging_info: {current_nudging_info}") # debug
output += completion_base
all_nudging_and_completions.append(nudging_words + completion_base) # the generated tokens in each round, concating all completion would be the final output
if print_intermediate_output:
print(f"************nudging round {nudging_round}************")
print(f"****nudging words from {nudging_model}****: {nudging_words}")
print(f"****nudging text****: {nudging_text}")
print(f"****completion from {base_model}****: {completion_base}")
print(f"****all completion from {base_model}****: {completion_base_all}")
print(f"****output****: {output}")
if nudging_round >= max_round and not stop_reason:
stop_reason = "round"
if len(encoding.encode(output)) >= max_token_total and not stop_reason:
stop_reason = "length"
output = remove_redundant_repetitions(output)
if print_intermediate_output:
print(f"************final output************")
print(f"****output****: {output}")
all_info = {
"question": question,
"context": context,
"raw_answer": output,
"all_nudging_words": all_nudging_words,
"all_completions": all_nudging_and_completions,
"stop_reason": stop_reason,
"system_prompt_base": system_prompt_base,
"system_prompt_nudging": system_prompt_nudging,
"full_prefix_base": full_prefix_base,
"full_prefix_nudging": full_prefix_nudging,
}
return all_info
def get_nudging_answer(base_model,
nudging_model,
system_prompt,
question,
context="",
question_prompt="",
answer_start_prompt_base="",
answer_start_prompt_nudging="",
completion_token_num=16,
completion_token_num_nudging=16,
max_token_total=256,
max_round=150,
nudging_temperature=0.0,
base_temperature=0.0,
nudging_method='top_prob',
top_prob_thres=0.3,
):
base_model = MODEL_MAPPING[base_model]
nudging_model = MODEL_MAPPING[nudging_model]
# with open('TOGETHER_KEY.txt', 'r') as f:
# togetherai_api_key = f.read().strip()
togetherai_api_key = os.environ.get("TOGETHERAI_API_KEY")
client = OpenAI(
api_key=togetherai_api_key,
base_url="https://api.together.xyz/v1",
)
return completion_with_nudging(
base_model=base_model,
nudging_model=nudging_model,
system_prompt_base=system_prompt,
system_prompt_nudging=system_prompt,
question=question,
context=context,
question_prompt=question_prompt,
answer_start_prompt_base=answer_start_prompt_base,
answer_start_prompt_nudging=answer_start_prompt_nudging,
completion_token_num=completion_token_num,
completion_token_num_nudging=completion_token_num_nudging,
max_token_total=max_token_total,
print_intermediate_output=False,
client_base=client,
client_nudging=client,
max_round=max_round,
nudging_temperature=nudging_temperature,
base_temperature=base_temperature,
nudging_method=nudging_method,
top_prob_thres=top_prob_thres,
)
def get_base_answer(base_model,
system_prompt,
question,
max_tokens=256,):
base_model = MODEL_MAPPING[base_model]
# with open('TOGETHER_KEY.txt', 'r') as f:
# togetherai_api_key = f.read().strip()
togetherai_api_key = os.environ.get("TOGETHERAI_API_KEY")
client = OpenAI(
api_key=togetherai_api_key,
base_url="https://api.together.xyz/v1",
)
response = client.completions.create(
model=base_model,
prompt=system_prompt+"\n"+ question,
max_tokens=max_tokens,
temperature=0.0,
logprobs=1,
)
return response.choices[0].text |