Spaces:
Runtime error
Runtime error
File size: 1,289 Bytes
ed1cb12 c1b0a00 ed1cb12 c1b0a00 ed1cb12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
import gradio as gr
import numpy as np
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image):
i_image = Image.fromarray(np.uint8(image))
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
pixel_values = feature_extractor(images=i_image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
iface = gr.Interface(fn=predict_step,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Textbox(label="Generated Caption"))
iface.launch(share=True)
|