Spaces:
Runtime error
Runtime error
File size: 2,585 Bytes
5156e7a e7aa175 3f98781 e7aa175 3f98781 e7aa175 5156e7a e7aa175 5156e7a 3f98781 e7aa175 5156e7a b725492 3f98781 0abf9df 5156e7a 3f98781 0d83943 3f98781 0d83943 3f98781 b725492 0d83943 3f98781 b725492 3f98781 b725492 3f98781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import torch
from diffusers import DDIMPipeline, DDPMPipeline, PNDMPipeline
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler
from diffusers import UNet2DModel
import gradio as gr
import PIL.Image
import numpy as np
import random
model_id = "google/ddpm-celebahq-256"
model = UNet2DModel.from_pretrained(model_id)
# load model and scheduler
ddpm_scheduler = DDPMScheduler.from_config(model_id)
ddpm_pipeline = DDPMPipeline(unet=model, scheduler=ddpm_scheduler)
ddim_scheduler = DDIMScheduler.from_config(model_id)
ddim_pipeline = DDIMPipeline(unet=model, scheduler=ddim_scheduler)
pndm_scheduler = PNDMScheduler.from_config(model_id)
pndm_pipeline = PNDMPipeline(unet=model, scheduler=pndm_scheduler)
# run pipeline in inference (sample random noise and denoise)
def predict(steps=100, seed=42,scheduler="ddim"):
torch.cuda.empty_cache()
generator = torch.manual_seed(seed)
if(scheduler == "ddim"):
images = ddim_pipeline(generator=generator, num_inference_steps=steps)["sample"]
elif(scheduler == "ddpm"):
images = ddpm_pipeline(generator=generator)["sample"]
elif(scheduler == "pndm"):
if(steps > 100):
steps = 100
images = pndm_pipeline(generator=generator, num_inference_steps=steps)["sample"]
return(images[0])
random_seed = random.randint(0, 2147483647)
gr.Interface(
predict,
inputs=[
gr.inputs.Slider(1, 1000, label='Inference Steps (ignored for the ddpm scheduler, that diffuses for 1000 steps - limited to 100 steps max for pndm)', default=20, step=1),
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
gr.inputs.Radio(["ddpm", "ddim", "pndm"], default="ddpm",label="Diffusion scheduler")
],
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
css="#output_image{width: 256px}",
title="ddpm-celebahq-256 diffusion - 🧨 diffusers library",
description="This Spaces contains an unconditional diffusion process for the <a href=\"https://huggingface.co/google/ddpm-celebahq-256\">ddpm-celebahq-256</a> face generator model by <a href=\"https://huggingface.co/google\">Google</a> using the <a href=\"https://github.com/huggingface/diffusers\">diffusers library</a>. You can try the diffusion process not only with the default <code>ddpm</code> scheduler but also with <code>ddim</code> and <code>pndm</code>, showcasing the modularity of the library. <a href=\"https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers\">Learn more about schedulers here.</a>",
).launch() |