File size: 19,465 Bytes
ad552d8
d74b261
ad552d8
 
 
 
 
 
 
 
 
 
d74b261
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74b261
 
 
 
 
 
 
 
 
 
 
 
ad552d8
 
 
 
 
 
d74b261
 
47347d0
d74b261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad552d8
 
 
 
d74b261
ad552d8
 
d74b261
 
 
ad552d8
 
 
 
d74b261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad552d8
 
 
 
 
 
 
 
 
d74b261
 
ad552d8
 
d74b261
 
 
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74b261
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74b261
ad552d8
 
d74b261
 
 
 
 
 
 
 
 
 
 
 
 
ad552d8
d74b261
 
 
 
 
 
 
 
 
 
ad552d8
 
d74b261
 
 
 
 
ad552d8
 
 
d74b261
 
 
 
ad552d8
 
 
d74b261
 
ad552d8
 
 
 
d74b261
 
 
ad552d8
 
 
 
 
 
 
d74b261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad552d8
 
d74b261
 
ad552d8
d74b261
56c73b8
d74b261
 
 
 
 
 
 
ad552d8
 
 
 
 
93ac1b8
 
ad552d8
 
 
 
d74b261
ad552d8
 
d74b261
 
 
 
ad552d8
 
d74b261
ad552d8
 
 
 
 
 
 
d74b261
 
 
ad552d8
d74b261
 
 
 
 
 
 
 
 
 
 
ad552d8
 
 
 
d74b261
 
 
 
 
 
 
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74b261
 
 
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74b261
 
 
 
 
 
 
 
 
 
 
 
 
ad552d8
 
 
 
 
 
 
 
d74b261
 
 
 
 
 
 
 
 
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
d74b261
 
 
 
 
 
 
 
 
ad552d8
 
 
 
 
 
d74b261
 
 
 
 
 
 
 
 
ad552d8
 
 
 
d74b261
ad552d8
 
 
d74b261
ad552d8
 
 
 
d74b261
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d74b261
 
 
 
ad552d8
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import os
import io
import gradio as gr
import numpy as np
import json
import redis
import plotly.graph_objects as go
from datetime import datetime
from PIL import Image
from kit import compute_performance, compute_quality
import dotenv
import pandas as pd
from email_validator import validate_email, EmailNotValidError
import cloudinary
import cloudinary.uploader

dotenv.load_dotenv()

CSS = """
.tabs button{
    font-size: 20px;
}
#download_btn {
    height: 91.6px;
}
#submit_btn {
    height: 91.6px;
}
#original_image {
    display: block;
    margin-left: auto;
    margin-right: auto;
}
#uploaded_image {
    display: block;
    margin-left: auto;
    margin-right: auto;
}
#leaderboard_plot {
    display: block;
    margin-left: auto;
    margin-right: auto;
    width: 640px;  /* Adjust width as needed */
    height: 640px;  /* Adjust height as needed */
#leaderboard_table {
    display: block;
    margin-left: auto;
    margin-right: auto;
}
"""

JS = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""

QUALITY_POST_FUNC = lambda x: x / 4 * 8
PERFORMANCE_POST_FUNC = lambda x: abs(x - 0.5) * 2


# Connect to Redis
redis_client = redis.Redis(
    host=os.getenv("REDIS_HOST"),
    port=os.getenv("REDIS_PORT"),
    username=os.getenv("REDIS_USERNAME"),
    password=os.getenv("REDIS_PASSWORD"),
    decode_responses=True,
)


# Connect to Cloudinary
cloudinary.config( 
    cloud_name = os.getenv("CLOUDINARY_NAME"), 
    api_key = os.getenv("CLOUDINARY_KEY"), 
    api_secret = os.getenv("CLOUDINARY_SECRET"),
    secure=True
)


def save_to_redis(current_submission):
    redis_client.lpush("submissions", json.dumps(current_submission))
    return current_submission


def get_submissions_from_redis():
    submissions = redis_client.lrange("submissions", 0, -1)
    submissions = [json.loads(submission) for submission in submissions]
    for s in submissions:
        s["quality"] = s["quality"]
        s["performance"] = s["performance"]
        s["score"] = np.sqrt(float(QUALITY_POST_FUNC(s["quality"])) ** 2 + float(PERFORMANCE_POST_FUNC(s["performance"])) ** 2)
    return filter_submissions(submissions)


def filter_submissions(submissions):
    new_submissions = []
    for sub in submissions:
        flag = True
        for new_sub in new_submissions:
            if sub["name"] == new_sub["name"]:
                flag = False
                if sub["score"] < new_sub["score"]:
                    for key in sub.keys():
                        new_sub[key] = sub[key]
                break
        if flag:
            new_submissions.append(sub)
    return new_submissions


def update_plot(
    submissions,
    current_submission=None,
):
    names = [sub["name"] for sub in submissions]
    performances = [float(PERFORMANCE_POST_FUNC(sub["performance"])) for sub in submissions]
    qualities = [float(QUALITY_POST_FUNC(sub["quality"])) for sub in submissions]
    descriptions = [sub["description"] for sub in submissions]

    # Create scatter plot
    fig = go.Figure()

    if current_submission is not None:
        fig.add_trace(
            go.Scatter(
                x=[QUALITY_POST_FUNC(current_submission["quality"])],
                y=[PERFORMANCE_POST_FUNC(current_submission["performance"])],
                mode="markers+text",
                #text=[name if not name.startswith("Baseline: ") else ""],
                #textposition="top center",
                name=current_submission["name"],
                marker=dict(symbol="star", size=15, color="orange"),
                customdata=[current_submission["name"]],
                hovertemplate = "<b>%{customdata}</b><br>" + "Performance: %{y:.3f}<br>" + "Quality: %{x:.3f}<br>" + f"Description: {current_submission['description'] if current_submission['description'] != '' else 'N/A'}" + "<extra></extra>",
            )
        )

    for name, quality, performance, description in zip(names, qualities, performances, descriptions):
        if name.startswith("Baseline: "):
            marker = dict(symbol="square", size=8, color="blue")
        else:
            marker = dict(symbol="circle", size=10, color="green")

        fig.add_trace(
            go.Scatter(
                x=[quality],
                y=[performance],
                mode="markers+text",
                #text=[name if not name.startswith("Baseline: ") else ""],
                #textposition="top center",
                name=name,
                marker=marker,
                customdata=[name if name.startswith("Baseline: ") else f"User: {name}",],
                hovertemplate = "<b>%{customdata}</b><br>" 
                + "Performance: %{y:.3f}<br>" 
                + "Quality: %{x:.3f}<br>" 
                + f"Description: {description if description != '' else 'N/A'}" 
                + "<extra></extra>",
            )
        )

    # Add circles
    circle_radii = np.linspace(0, 1, 5)
    for radius in circle_radii:
        theta = np.linspace(0, 2 * np.pi, 100)
        x = radius * np.cos(theta)
        y = radius * np.sin(theta)
        fig.add_trace(
            go.Scatter(
                x=x,
                y=y,
                mode="lines",
                line=dict(color="gray", dash="dash"),
                showlegend=False,
                hovertemplate = "Performance: %{x:.3f}<br>" 
                + "Quality: %{y:.3f}<br>" 
                + "<extra></extra>"
            )
        )

    # Update layout
    fig.update_layout(
        xaxis_title="Image Quality Degredation",
        yaxis_title="Watermark Detection Performance",
        xaxis=dict(
            range=[0, 1.1], titlefont=dict(size=16)  # Adjust this value as needed
        ),
        yaxis=dict(
            range=[0, 1.1], titlefont=dict(size=16)  # Adjust this value as needed
        ),
        width=640,
        height=640,
        showlegend=False,  # Remove legend
    )
    fig.update_xaxes(title_font_size=20)
    fig.update_yaxes(title_font_size=20)

    return fig


def update_table(
    submissions,
    current_submission=None,
):
    def tp(timestamp):
        return timestamp.replace("T", " ").split('.')[0]
    def get_name(name, is_published, url_image):
        text = name[len("Baseline: "):] if name.startswith("Baseline: ") else name
        if not is_published or url_image == "":
            return text
        else:
            return f"[{text}]({url_image})"
    names = [get_name(sub["name"], sub["is_published"], sub["url_image"]) for sub in submissions]
    emails = [sub["email"] for sub in submissions]
    descriptions = [sub["description"] for sub in submissions]
    times = ["" if sub["name"].startswith("Baseline: ") else tp(sub["timestamp"]) for sub in submissions]
    performances = ["%.4f" % (float(PERFORMANCE_POST_FUNC(sub["performance"]))) for sub in submissions]
    qualities = ["%.4f" % (float(QUALITY_POST_FUNC(sub["quality"]))) for sub in submissions]
    scores = ["%.4f" % (float(sub["score"])) for sub in submissions]

    if current_submission is not None:
        names.append(get_name(current_submission["name"], current_submission["is_published"], current_submission["url_image"]))
        emails.append(current_submission["email"])
        descriptions.append(current_submission["description"])
        times.append(current_submission["timestamp"]+" (Current)")
        performances.append("%.4f" % (float(PERFORMANCE_POST_FUNC(current_submission["performance"]))))
        qualities.append("%.4f" % (float(QUALITY_POST_FUNC(current_submission["quality"]))))
        scores.append("%.4f" % (float(np.sqrt(float(QUALITY_POST_FUNC(current_submission["quality"])) ** 2 + float(PERFORMANCE_POST_FUNC(current_submission["performance"])) ** 2))))

    df = pd.DataFrame(
        {
            "Name":names,
            "Email":emails,
            "Description":descriptions,
            "Submission Time":times, 
            "Performance":performances, 
            "Quality": qualities,
            "Score": scores,
        }
    ).sort_values(
        by=["Score"]
    )
    df.insert(0, "Rank #", list(np.arange(len(names))+1), True)
    def highlight_null(s):
        con = s.copy()
        con[:] = None
        if s['Submission Time'] == '':
            con[:] = 'background-color: lightgrey'
        return con
    return df.style.apply(highlight_null, axis=1)


def process_submission(name, email, description, is_published, image):
    submissions = get_submissions_from_redis()

    original_image = Image.open("./image.png")
    progress = gr.Progress()
    progress(0, desc="Detecting Watermark")
    performance = compute_performance(image)
    progress(0.4, desc="Evaluating Image Quality")
    quality = compute_quality(image, original_image)
    progress(1.0, desc="Uploading Results")
    b = io.BytesIO()
    image.save(b, 'png')
    im_bytes = b.getvalue()
    upload_result = cloudinary.uploader.upload(im_bytes, public_id=email)
    url_image = upload_result["secure_url"]
    
    current_submission = {
        "name": name,
        "performance": performance,
        "quality": quality,
        "timestamp": datetime.now().isoformat(),
        "email": email,
        "description": description,
        "is_published": is_published,
        "url_image": url_image,
    }
    
    leaderboard_table = update_table(submissions, current_submission=current_submission)
    leaderboard_plot = update_plot(submissions, current_submission=current_submission)
    
    # Calculate rank
    distances = [
        np.sqrt(float(QUALITY_POST_FUNC(s["quality"])) ** 2 + float(PERFORMANCE_POST_FUNC(s["performance"])) ** 2)
        for s in submissions+[current_submission]
    ]
    rank = (
        sorted(distances, reverse=False).index(
            np.sqrt(float(QUALITY_POST_FUNC(quality))**2 + float(PERFORMANCE_POST_FUNC(performance))**2)
        ) + 1
    )
    gr.Info(f"You ranked {rank} out of {len(submissions)+1}!")

    save_to_redis(current_submission)
    
    return (
        leaderboard_plot,
        leaderboard_table,
        f"{rank} out of {len(submissions)}",
        name,
        f"{PERFORMANCE_POST_FUNC(performance):.3f}",
        f"{QUALITY_POST_FUNC(quality):.3f}",
        f"{np.sqrt(quality**2 + performance**2):.3f}",
    )


def upload_and_evaluate(name, email, description, is_published, image):
    if name == "":
        raise gr.Error("Please enter your name before submitting.")
    try:
        email = validate_email(email)["email"]
    except EmailNotValidError as e:
        raise gr.Error(f"Please enter a valid email before submitting.")
    if image is None:
        raise gr.Error("Please upload an image before submitting.")
    return process_submission(name, email, description, is_published, image)


def create_interface():
    with gr.Blocks(theme=gr.themes.Soft(), css=CSS, js=JS) as demo:
        gr.Markdown(
            """
            # Erasing the Invisible (Demo of NeurIPS'24 competition)
            ### Welcome to the demo of the NeurIPS'24 competition [Erasing the Invisible: A Stress-Test Challenge for Image Watermarks](https://erasinginvisible.github.io/).
        
            ### You could use this demo to better understand the competition pipeline or just for fun! ๐ŸŽฎ
            
            ### Here, we provide a image embedded with invisible watermark, you only need to:
            
            ### Step 1: **Download** the original watermarked image. ๐ŸŒŠ
            
            ### Step 2: **Remove** the invisible watermark using your preferred attack. ๐Ÿงผ
            
            ### Step 3: **Upload** your image. We will evaluate and rank your attack. ๐Ÿ“Š
            
            ### That's it! ๐Ÿš€
            
            ### *Note: This is just a demo. The watermark used here is not necessarily representative of those used for the competition. To officially participate in the competition, please follow the guidelines [here](https://erasinginvisible.github.io/).*
            """
        )

        with gr.Tabs(elem_classes=["tabs"]) as tabs:
            with gr.Tab(
                "Original Watermarked Image", 
                id="download"
            ):
                # gr.Markdown(
                #     """
                #     TODO: Add descriptions
                #     """
                # )
                with gr.Column():
                    original_image = gr.Image(
                        value="./image.png",
                        format="png",
                        label="Original Watermarked Image",
                        show_label=True,
                        height=512,
                        width=512,
                        type="filepath",
                        show_download_button=False,
                        show_share_button=False,
                        show_fullscreen_button=False,
                        container=True,
                        elem_id="original_image",
                    )
                    with gr.Row():
                        download_btn = gr.DownloadButton(
                            "Download Watermarked Image",
                            value="./image.png",
                            elem_id="download_btn",
                        )
                        submit_btn = gr.Button(
                            "Submit Your Removal", elem_id="submit_btn"
                        )

            with gr.Tab(
                "Submit Watermark Removed Image",
                id="submit",
                elem_classes="gr-tab-header",
            ):
                # gr.Markdown(
                #     """
                #     TODO: Add descriptions
                #     """
                # )
                with gr.Column():
                    uploaded_image = gr.Image(
                        label="Your Watermark Removed Image",
                        format="png",
                        show_label=True,
                        height=512,
                        width=512,
                        sources=["upload"],
                        type="pil",
                        show_download_button=False,
                        show_share_button=False,
                        show_fullscreen_button=False,
                        container=True,
                        placeholder="Upload your watermark removed image",
                        elem_id="uploaded_image",
                    )
                    with gr.Row():
                        with gr.Column():
                            description_input = gr.Textbox(
                                label="Method Description (optional)", placeholder="You could provide here a brief description of the attack", lines=6
                            )
                            is_published_input = gr.Checkbox(label="Would you like to publish your image?")
                        with gr.Column():
                            name_input = gr.Textbox(
                                label="Your Name", placeholder="Anonymous"
                            )
                            email_input = gr.Textbox(
                                label="Your Email", placeholder="Anonymous"
                            )
                            upload_btn = gr.Button("Upload and Evaluate")

            with gr.Tab(
                "Evaluation Results",
                id="plot",
                elem_classes="gr-tab-header",
            ):
                gr.Markdown(
                    """
                    <h3> The evaluation is based on two metrics, watermark performance (A) and image quality degradation (Q).
                    The lower the watermark performance and less quality degradation, the more effective the attack is.
                    The overall score is $$\large \sqrt{Q^2+A^2}$$, the smaller the better.

                    ๐ŸŸฆ: Baseline attacks
                    
                    ๐ŸŸข: Users' submissions
                    
                    โญ: Your current submission

                    Note: The performance and quality metrics differ from those in the competition (as only one image is used here), but they still give you an idea of how effective your attack is.
                    """
                )
                with gr.Column():
                    leaderboard_plot = gr.Plot(
                        value=update_plot(get_submissions_from_redis()),
                        show_label=False,
                        elem_id="leaderboard_plot",
                    )
                    with gr.Row():
                        rank_output = gr.Textbox(label="Your Ranking")
                        name_output = gr.Textbox(label="Your Name")
                        performance_output = gr.Textbox(
                            label="Watermark Performance (lower is better)"
                        )
                        quality_output = gr.Textbox(
                            label="Quality Degredation (lower is better)"
                        )
                        overall_output = gr.Textbox(
                            label="Overall Score (lower is better)"
                        )
            with gr.Tab(
                "Leaderboard",
                id="leaderboard",
                elem_classes="gr-tab-header",
            ):
                gr.Markdown(
                    """
                    <h3> Find your ranking on the leaderboard!

                    <h3> Gray-shaded rows are baseline results provided by the organziers.

                    <h3> To check the pulished attacked images, click on the links in the "Name" column.
                    
                    <h3> For multiple submissions with the same name, only the best (lowest) score is shown.
                    """
                )
                with gr.Column():
                    leaderboard_table = gr.Dataframe(
                        value=update_table(get_submissions_from_redis()),
                        datatype=["str", "markdown", "str", "str", "str", "str", "str"],
                        show_label=False,
                        elem_id="leaderboard_table",
                    )

        submit_btn.click(lambda: gr.Tabs(selected="submit"), None, tabs)

        upload_btn.click(lambda: gr.Tabs(selected="plot"), None, tabs).then(
            upload_and_evaluate,
            inputs=[name_input, email_input, description_input, is_published_input, uploaded_image],
            outputs=[
                leaderboard_plot,
                leaderboard_table,
                rank_output,
                name_output,
                performance_output,
                quality_output,
                overall_output,
            ],
        )

        demo.load(
            lambda: [
                gr.Image(value="./image.png", height=512, width=512),
                gr.Plot(update_plot(get_submissions_from_redis())),
                gr.Dataframe(
                    update_table(get_submissions_from_redis()),
                    datatype=["str", "markdown", "str", "str", "str", "str", "str"]
                ),
            ],
            outputs=[original_image, leaderboard_plot, leaderboard_table],
        )

    return demo


# Create the demo object
demo = create_interface()

# Launch the app
if __name__ == "__main__":
    demo.launch(share=False)