Spaces:
Runtime error
Runtime error
File size: 20,790 Bytes
a06fad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py
# Modified by Qihang Yu
import torch
import torch.nn.functional as F
from torch import nn
_SOFTMAX_MASKING_CONSTANT = -99999.0
# https://www.tensorflow.org/api_docs/python/tf/math/divide_no_nan
def divide_no_nan(x: torch.Tensor, y: torch.Tensor):
return torch.nan_to_num(x / y, nan=0.0, posinf=0.0, neginf=0.0)
# https://github.com/google-research/deeplab2/blob/main/model/loss/base_loss.py#L393
def focal_cross_entropy_loss(
pred: torch.Tensor,
gt: torch.Tensor,
weight: torch.Tensor, # This is for PQ-loss weighting
focal_loss_alpha: float = 0.75,
focal_loss_gamma: float = 0.0,
background_channel_index: int = -1):
"""
pred: B x N x C
gt: B x N
weight: B x N
"""
pred = pred.transpose(1, 2) # B x C x N
gt = F.one_hot(gt, num_classes=pred.shape[1]).transpose(1, 2).to(pred) # B x C x N
loss = F.cross_entropy(pred, gt, reduction="none") # B x N
if focal_loss_gamma == 0.0:
focal_loss = loss
else:
pred = F.softmax(pred, dim=1) # B x C x N
pt = (pred * gt).sum(1) # B x N
focal_loss = torch.pow(1.0 - pt, focal_loss_gamma) * loss # B x N
if focal_loss_alpha >= 0:
alpha_weights = (
focal_loss_alpha * (1.0 - gt[:, background_channel_index])
+ (1 - focal_loss_alpha) * gt[:, background_channel_index]) # B x N
focal_loss = alpha_weights * focal_loss # B x N
focal_loss = focal_loss * weight # B x N
focal_loss = focal_loss.flatten(1)
num_non_zero = (focal_loss != 0.0).to(focal_loss).sum(-1) # B
num_non_zero = torch.clamp(num_non_zero, min=1.0)
loss_sum_per_sample = focal_loss.sum(-1) # B
return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1
# https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py#L50
def _gumbel_topk_sample(logits: torch.Tensor, k: int):
"""Samples k points from the softmax distribution with Gumbel-Top-k trick."""
# Note that torch.rand is [0, 1), we need to make it (0, 1) to ensure the log is valid.
gumbel_noise = torch.rand(size=logits.shape, dtype=logits.dtype, device=logits.device)
gumbel_noise = -torch.log(-torch.log(gumbel_noise))
_, indices = torch.topk(logits + gumbel_noise, k)
return indices
# https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py#L576
def pixelwise_insdis_loss(
pixel_feature: torch.Tensor,
gt_mask: torch.Tensor,
sample_temperature: float,
sample_k: int,
instance_discrimination_temperature: float,
pixel_gt_void_mask: torch.Tensor,
inverse_gt_mask_area: torch.Tensor
):
# pixel_feature: B x C x H x W
# gt_mask: B x N x H x W
pixel_feature = pixel_feature.flatten(2) # B x C x HW
gt_mask = gt_mask.flatten(2) # B x N x HW
pixel_gt_void_mask = pixel_gt_void_mask.flatten(1) # B x HW
inverse_gt_mask_area = inverse_gt_mask_area.flatten(1) # B x HW
sample_logits = torch.log(inverse_gt_mask_area) * sample_temperature # B x HW
# sample_logits.masked_fill_(pixel_gt_void_mask, float('-inf'))
sample_logits += pixel_gt_void_mask.to(sample_logits) * _SOFTMAX_MASKING_CONSTANT
sample_indices = _gumbel_topk_sample(sample_logits, sample_k) # B x K
# Sample ground truth one-hot encodings and compute gt_similarity.
pixel_gt_sampled_feature = torch.gather(gt_mask, dim=2, index=sample_indices.unsqueeze(1).repeat(1, gt_mask.shape[1], 1)) # B x N x K
sampled_gt_similarity = torch.einsum('bnk,bnj->bkj', pixel_gt_sampled_feature, pixel_gt_sampled_feature) # B x K x K
# Normalize the ground truth similarity into a distribution (sum to 1).
pixel_normalizing_constant = sampled_gt_similarity.sum(dim=1, keepdim=True) # B x 1 x K
sampled_gt_similarity /= torch.clamp(pixel_normalizing_constant, min=1.0) # B x K x K
# Sample predicted features and compute pred_similarity.
pixel_pred_sampled_feature = torch.gather(pixel_feature, dim=2, index=sample_indices.unsqueeze(1).repeat(1, pixel_feature.shape[1], 1)) # B x C x K
sampled_pred_similarity = torch.einsum('bck,bcj->bkj', pixel_pred_sampled_feature, pixel_pred_sampled_feature) # B x K x K
sampled_pred_similarity /= instance_discrimination_temperature # B x K x K
loss = F.cross_entropy(sampled_pred_similarity, sampled_gt_similarity, reduction="none") # B x K
num_non_zero = (loss != 0.0).to(loss).sum(-1) # B
num_non_zero = torch.clamp(num_non_zero, min=1.0)
loss_sum_per_sample = loss.sum(-1) # B
return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1
def aux_semantic_loss(
pred_semantic_logits: torch.Tensor,
ground_truth_semantic: torch.Tensor,
sample_temperature: float,
sample_k: int,
pixel_gt_void_mask: torch.Tensor,
inverse_gt_mask_area: torch.Tensor,
num_classes: int):
pred_semantic_logits = pred_semantic_logits.flatten(2) # B x C x HW
ground_truth_semantic = ground_truth_semantic.flatten(1) # B x HW
pixel_gt_void_mask = pixel_gt_void_mask.flatten(1) # B x HW
inverse_gt_mask_area = inverse_gt_mask_area.flatten(1) # B x HW
sample_logits = torch.log(inverse_gt_mask_area) * sample_temperature # B x HW
sample_logits += pixel_gt_void_mask.to(sample_logits) * _SOFTMAX_MASKING_CONSTANT
sample_indices = _gumbel_topk_sample(sample_logits, sample_k) # B x K
sampled_ground_truth_semantic = torch.gather(ground_truth_semantic, dim=1, index=sample_indices) # B x K
sampled_pred_semantic_logits = torch.gather(pred_semantic_logits, dim=2, index=sample_indices.unsqueeze(1).repeat(1, pred_semantic_logits.shape[1], 1)) # B x C x K
# ignore the class index num_classes.
keep_mask = (sampled_ground_truth_semantic != num_classes) # B x K
loss = F.cross_entropy(sampled_pred_semantic_logits, sampled_ground_truth_semantic, ignore_index=num_classes, reduction='none') # B x K
loss = loss * keep_mask.to(loss)
num_non_zero = (loss != 0.0).to(loss).sum(-1) # B
num_non_zero = torch.clamp(num_non_zero, min=1.0)
loss_sum_per_sample = loss.sum(-1) # B
return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1
# https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/base_loss.py#L56
# https://github.com/google-research/deeplab2/blob/main/model/loss/base_loss.py#L510
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
pixel_gt_void_mask: torch.Tensor,
matched_cls_prob: torch.Tensor
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.softmax(1) # B N HW
# https://github.com/google-research/deeplab2/blob/main/model/loss/base_loss.py#L111
inputs = inputs.masked_fill(pixel_gt_void_mask.unsqueeze(1), 0) # remove void pixels.
smooth = 1.0
intersection = 2 * (inputs * targets).sum(-1) + smooth # B x N
denominator = inputs.sum(-1) + targets.sum(-1) + smooth # B x N
loss = 1.0 - divide_no_nan(intersection, denominator)
loss *= matched_cls_prob
# Note: kMaX-DeepLab sum over num_masks and avg over batches. But here batch and num_mask are one
# https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/base_loss.py#L559
# https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/max_deeplab_loss.py#L402
# As the existing of modifer, it equals to multiplier by 0.75
return (loss.sum(1) * 0.75/128).mean() # sum over masks and mean over batches.
def softmax_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
pixel_gt_void_mask: torch.Tensor,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.cross_entropy(inputs, targets, reduction="none") # B x HW
loss = loss.masked_fill(pixel_gt_void_mask, 0) # remove void pixels.
num_non_zero = (loss != 0.0).to(loss).sum(-1) # B
num_non_zero = torch.clamp(num_non_zero, min=1.0)
loss_sum_per_sample = loss.sum(-1) # B
return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1
class SetCriterion(nn.Module):
"""This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, share_final_matching,
pixel_insdis_temperature=1.5, pixel_insdis_sample_k=4096,
aux_semantic_temperature=2.0, aux_semantic_sample_k=4096):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
self.share_final_matching = share_final_matching
self.pixel_insdis_temperature = pixel_insdis_temperature
self.pixel_insdis_sample_k = pixel_insdis_sample_k
self.aux_semantic_temperature = aux_semantic_temperature
self.aux_semantic_sample_k = aux_semantic_sample_k
def loss_labels(self, outputs, targets):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert "pred_logits" in outputs
src_logits = outputs["pred_logits"] # B x N x C
target_classes = targets["labels"] # B x N
pq_loss_class_weight = targets["pq_loss_class_weight"]
losses = {"loss_ce": focal_cross_entropy_loss(src_logits, target_classes, pq_loss_class_weight)}
return losses
def loss_masks(self, outputs, targets):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
src_masks = outputs["pred_masks"] # B x N x H x W
target_masks = targets["masks"]
pq_loss_mask_weight = targets["pq_loss_mask_weight"]
pixel_gt_void_mask = targets["pixel_gt_void_mask"]
src_masks = src_masks.flatten(2) # B x N x HW
target_masks = target_masks.flatten(2) # B x N x HW
pixel_gt_void_mask = pixel_gt_void_mask.flatten(1) # B x HW
losses = {
"loss_mask": softmax_ce_loss(src_masks, target_masks, pixel_gt_void_mask),
"loss_dice": dice_loss(src_masks, target_masks, pixel_gt_void_mask, pq_loss_mask_weight),
}
return losses
def loss_pixels(self, outputs, targets):
pixel_feature = outputs["pixel_feature"]
target_masks = targets["masks"]
pixel_gt_void_mask = targets["pixel_gt_void_mask"]
inverse_gt_mask_area = targets["inverse_gt_mask_area"]
losses = {"loss_pixel_insdis": pixelwise_insdis_loss(
pixel_feature=pixel_feature,
gt_mask=target_masks,
sample_temperature=self.pixel_insdis_temperature,
sample_k=self.pixel_insdis_sample_k,
instance_discrimination_temperature=0.3,
pixel_gt_void_mask=pixel_gt_void_mask,
inverse_gt_mask_area=inverse_gt_mask_area
)}
del target_masks
return losses
def loss_semantic(self, outputs, targets):
pred_semantic_logits = outputs["aux_semantic_pred"]
ground_truth_semantic = targets["ground_truth_semantic"]
pixel_gt_void_mask = targets["pixel_gt_void_mask"].flatten(1)
inverse_gt_mask_area = targets["inverse_gt_mask_area"].flatten(1)
losses = {"loss_aux_semantic": aux_semantic_loss(
pred_semantic_logits=pred_semantic_logits,
ground_truth_semantic=ground_truth_semantic,
sample_temperature=self.aux_semantic_temperature,
sample_k=self.aux_semantic_sample_k,
pixel_gt_void_mask=pixel_gt_void_mask,
inverse_gt_mask_area=inverse_gt_mask_area,
num_classes=self.num_classes
)}
return losses
@torch.no_grad()
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
# torch.full_like gives a tensor full of i in shape of src.shape
# at each iter, i is the index, src is the src ind in shape of (N)
# so batch_idx is concat of (0,0,...), (1,1,...), with shape (N0+N1+N2+...+Nb)
# so if we flatten gt/pred across bathces, this gives the batch_id of each sample
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
# src_idx is src_ind concated to shape (N0+N1+N2+...+Nb)
# it is a flattened concat of mask_id at each batch
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def get_loss(self, loss, outputs, targets):
loss_map = {
'labels': self.loss_labels,
'masks': self.loss_masks,
'pixels': self.loss_pixels,
'aux_semantic': self.loss_semantic,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
return loss_map[loss](outputs, targets)
@torch.no_grad()
def process_gt(self, outputs, targets, indices, matched_dice, matched_cls_prob, process_semantic=False):
# Permute&Pad Pred> for loss compuation.
# By controling process_gt, we can share the matching results for all preds.
src_idx = self._get_src_permutation_idx(indices)
src_masks = outputs["pred_masks"].detach() # B x N x H x W
# Pad and permute the target_mask to B x N x H x W
target_masks = torch.zeros_like(src_masks)
target_masks_o = torch.cat([t["masks"][J] for t, (_, J) in zip(targets, indices)]).to(target_masks)
target_masks[src_idx] = target_masks_o
# Pad and permute the matched_cls_prob to B x N
matched_cls_prob_o = torch.cat([cls_prob for cls_prob in matched_cls_prob])
matched_cls_prob_o = torch.clamp(matched_cls_prob_o, min=self.eos_coef)
# https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py#L1034
# no penalty for unmatched masks.
matched_cls_prob = torch.full(
src_masks.shape[:2], 0, dtype=src_masks.dtype, device=src_masks.device
) # B x N
matched_cls_prob[src_idx] = matched_cls_prob_o.to(matched_cls_prob)
# pixel_gt_void_mask is used to indicate those pixels without labels.
pixel_gt_void_mask = (target_masks.sum(1) < 1) # B x H x W
# inverse_gt_mask_area is used to sample pixels.
mask_gt_area = target_masks.sum(2).sum(2) # B x N
pixel_gt_area = torch.einsum('bnhw,bn->bhw', target_masks, mask_gt_area) # B x H x W
inverse_gt_mask_area = (pixel_gt_area.shape[1] * pixel_gt_area.shape[2]) / torch.clamp(pixel_gt_area, min=1.0) # B x H x W
src_logits = outputs["pred_logits"] # B x N x C
# Pad and permute the target_classes to B x N
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
# This serves as a padding.
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
# We put real GT to those corresponds to src_idx, and put void into other places.
target_classes[src_idx] = target_classes_o
src_masks_prob = src_masks.softmax(1)
void_mask = pixel_gt_void_mask.to(src_masks_prob) # B x H x W
# compute iou instead of dice for void overlapping.
def computer_iou_score(x, y):
# x : B x N x H x W
# y : B x H x W
x = x.flatten(2) # B x N x L
y = y.flatten(1) # B x L
intersection = torch.einsum('bnl,bl->bn', x, y) # B x N
denominator = x.sum(-1) # B x N
return intersection / (denominator + 1e-5) # B x N
# Pad and permute the matched_dice to B x N
matched_dice_o = torch.cat([dice for dice in matched_dice])
matched_dice = computer_iou_score(src_masks_prob, void_mask) # unmatched masks use their dice with void
matched_dice[src_idx] = matched_dice_o.to(matched_dice)
matched_dice = torch.clamp(matched_dice, min=self.eos_coef)
processed_gt = {"masks": target_masks, "labels": target_classes,
"pq_loss_mask_weight": matched_cls_prob,
"pq_loss_class_weight": matched_dice,
"pixel_gt_void_mask": pixel_gt_void_mask,
"inverse_gt_mask_area": inverse_gt_mask_area,}
if process_semantic:
# To obtain semantic gt
ground_truth_semantic = [t["semantic_masks"] for t in targets]
ground_truth_semantic = torch.stack(ground_truth_semantic, dim=0) # B x H x W
# self.num_classes is set to ignore label
ground_truth_semantic[ground_truth_semantic==-1] = self.num_classes
processed_gt.update({"ground_truth_semantic": ground_truth_semantic})
return processed_gt
def forward(self, outputs, targets):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
indices, matched_dice, matched_cls_prob = self.matcher(outputs_without_aux, targets)
# Pad GT to the same number of prediction.
processed_targets = self.process_gt(outputs, targets, indices, matched_dice, matched_cls_prob, process_semantic=True)
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, processed_targets))
if "aux_outputs" in outputs:
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
# We share matching results across predictions.
if not self.share_final_matching:
indices, matched_dice, matched_cls_prob = self.matcher(aux_outputs, targets)
if not self.share_final_matching:
processed_targets = self.process_gt(aux_outputs, targets, indices, matched_dice, matched_cls_prob)
for loss in self.losses:
if loss in ['aux_semantic']:
# Only for final output.
continue
l_dict = self.get_loss(loss, aux_outputs, processed_targets)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def __repr__(self):
head = "Criterion " + self.__class__.__name__
body = [
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
"losses: {}".format(self.losses),
"weight_dict: {}".format(self.weight_dict),
"num_classes: {}".format(self.num_classes),
"eos_coef: {}".format(self.eos_coef),
]
_repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines) |