File size: 20,790 Bytes
a06fad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py
# Modified by Qihang Yu

import torch
import torch.nn.functional as F
from torch import nn

_SOFTMAX_MASKING_CONSTANT = -99999.0

# https://www.tensorflow.org/api_docs/python/tf/math/divide_no_nan
def divide_no_nan(x: torch.Tensor, y: torch.Tensor):
    return torch.nan_to_num(x / y, nan=0.0, posinf=0.0, neginf=0.0)


# https://github.com/google-research/deeplab2/blob/main/model/loss/base_loss.py#L393
def focal_cross_entropy_loss(
    pred: torch.Tensor,
    gt: torch.Tensor,
    weight: torch.Tensor, # This is for PQ-loss weighting
    focal_loss_alpha: float = 0.75,
    focal_loss_gamma: float = 0.0,
    background_channel_index: int = -1):
    """
    pred: B x N x C
    gt: B x N
    weight: B x N
    """
    pred = pred.transpose(1, 2) # B x C x N
    gt = F.one_hot(gt, num_classes=pred.shape[1]).transpose(1, 2).to(pred) # B x C x N
    loss = F.cross_entropy(pred, gt, reduction="none") # B x N
    if focal_loss_gamma == 0.0:
        focal_loss = loss
    else:
        pred = F.softmax(pred, dim=1) # B x C x N
        pt = (pred * gt).sum(1)  # B x N
        focal_loss = torch.pow(1.0 - pt, focal_loss_gamma) * loss # B x N
    
    if focal_loss_alpha >= 0:
        alpha_weights = (
          focal_loss_alpha * (1.0 - gt[:, background_channel_index])
          + (1 - focal_loss_alpha) * gt[:, background_channel_index]) # B x N
        focal_loss = alpha_weights * focal_loss # B x N
    
    focal_loss = focal_loss * weight # B x N
    focal_loss = focal_loss.flatten(1)
    num_non_zero = (focal_loss != 0.0).to(focal_loss).sum(-1) # B
    num_non_zero = torch.clamp(num_non_zero, min=1.0)
    loss_sum_per_sample = focal_loss.sum(-1) # B
    return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1


# https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py#L50
def _gumbel_topk_sample(logits: torch.Tensor, k: int):
    """Samples k points from the softmax distribution with Gumbel-Top-k trick."""
    # Note that torch.rand is [0, 1), we need to make it (0, 1) to ensure the log is valid.
    gumbel_noise = torch.rand(size=logits.shape, dtype=logits.dtype, device=logits.device)
    gumbel_noise = -torch.log(-torch.log(gumbel_noise))
    _, indices = torch.topk(logits + gumbel_noise, k)
    return indices


# https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py#L576
def pixelwise_insdis_loss(
    pixel_feature: torch.Tensor,
    gt_mask: torch.Tensor,
    sample_temperature: float,
    sample_k: int,
    instance_discrimination_temperature: float,
    pixel_gt_void_mask: torch.Tensor,
    inverse_gt_mask_area: torch.Tensor
    ):
    
    # pixel_feature: B x C x H x W
    # gt_mask: B x N x H x W
    pixel_feature = pixel_feature.flatten(2) # B x C x HW
    gt_mask = gt_mask.flatten(2) # B x N x HW
    pixel_gt_void_mask = pixel_gt_void_mask.flatten(1) # B x HW
    inverse_gt_mask_area = inverse_gt_mask_area.flatten(1) # B x HW

    sample_logits = torch.log(inverse_gt_mask_area) * sample_temperature # B x HW
    # sample_logits.masked_fill_(pixel_gt_void_mask, float('-inf'))
    sample_logits += pixel_gt_void_mask.to(sample_logits) * _SOFTMAX_MASKING_CONSTANT

    sample_indices = _gumbel_topk_sample(sample_logits, sample_k) # B x K
    # Sample ground truth one-hot encodings and compute gt_similarity.
    pixel_gt_sampled_feature = torch.gather(gt_mask, dim=2, index=sample_indices.unsqueeze(1).repeat(1, gt_mask.shape[1], 1)) # B x N x K
    sampled_gt_similarity = torch.einsum('bnk,bnj->bkj', pixel_gt_sampled_feature, pixel_gt_sampled_feature) # B x K x K

    # Normalize the ground truth similarity into a distribution (sum to 1).
    pixel_normalizing_constant = sampled_gt_similarity.sum(dim=1, keepdim=True) # B x 1 x K
    sampled_gt_similarity /= torch.clamp(pixel_normalizing_constant, min=1.0) # B x K x K

    # Sample predicted features and compute pred_similarity.
    pixel_pred_sampled_feature = torch.gather(pixel_feature, dim=2, index=sample_indices.unsqueeze(1).repeat(1, pixel_feature.shape[1], 1)) # B x C x K
    sampled_pred_similarity = torch.einsum('bck,bcj->bkj', pixel_pred_sampled_feature, pixel_pred_sampled_feature) # B x K x K
    sampled_pred_similarity /= instance_discrimination_temperature # B x K x K
    loss = F.cross_entropy(sampled_pred_similarity, sampled_gt_similarity, reduction="none") # B x K

    num_non_zero = (loss != 0.0).to(loss).sum(-1) # B
    num_non_zero = torch.clamp(num_non_zero, min=1.0)
    loss_sum_per_sample = loss.sum(-1) # B
    return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1


def aux_semantic_loss(
    pred_semantic_logits: torch.Tensor,
    ground_truth_semantic: torch.Tensor,
    sample_temperature: float,
    sample_k: int,
    pixel_gt_void_mask: torch.Tensor,
    inverse_gt_mask_area: torch.Tensor,
    num_classes: int):

    pred_semantic_logits = pred_semantic_logits.flatten(2) # B x C x HW
    ground_truth_semantic = ground_truth_semantic.flatten(1) # B x HW
    pixel_gt_void_mask = pixel_gt_void_mask.flatten(1) # B x HW
    inverse_gt_mask_area = inverse_gt_mask_area.flatten(1) # B x HW

    sample_logits = torch.log(inverse_gt_mask_area) * sample_temperature # B x HW
    sample_logits += pixel_gt_void_mask.to(sample_logits) * _SOFTMAX_MASKING_CONSTANT

    sample_indices = _gumbel_topk_sample(sample_logits, sample_k) # B x K
    sampled_ground_truth_semantic = torch.gather(ground_truth_semantic, dim=1, index=sample_indices) # B x K
    sampled_pred_semantic_logits = torch.gather(pred_semantic_logits, dim=2, index=sample_indices.unsqueeze(1).repeat(1, pred_semantic_logits.shape[1], 1)) # B x C x K
    # ignore the class index num_classes.
    keep_mask = (sampled_ground_truth_semantic != num_classes) # B x K
    loss = F.cross_entropy(sampled_pred_semantic_logits, sampled_ground_truth_semantic, ignore_index=num_classes, reduction='none') # B x K
    loss = loss * keep_mask.to(loss)
    num_non_zero = (loss != 0.0).to(loss).sum(-1) # B
    num_non_zero = torch.clamp(num_non_zero, min=1.0)
    loss_sum_per_sample = loss.sum(-1) # B
    return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1


# https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/base_loss.py#L56
# https://github.com/google-research/deeplab2/blob/main/model/loss/base_loss.py#L510
def dice_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        pixel_gt_void_mask: torch.Tensor,
        matched_cls_prob: torch.Tensor
    ):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.softmax(1) # B N HW
    # https://github.com/google-research/deeplab2/blob/main/model/loss/base_loss.py#L111
    inputs = inputs.masked_fill(pixel_gt_void_mask.unsqueeze(1), 0) # remove void pixels.
    smooth = 1.0
    intersection = 2 * (inputs * targets).sum(-1) + smooth # B x N
    denominator = inputs.sum(-1) + targets.sum(-1) + smooth # B x N
    loss = 1.0 - divide_no_nan(intersection, denominator)
    loss *= matched_cls_prob
    # Note: kMaX-DeepLab sum over num_masks and avg over batches. But here batch and num_mask are one
    # https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/base_loss.py#L559
    # https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/max_deeplab_loss.py#L402
    # As the existing of modifer, it equals to multiplier by 0.75
    return (loss.sum(1) * 0.75/128).mean() # sum over masks and mean over batches.


def softmax_ce_loss(
        inputs: torch.Tensor,
        targets: torch.Tensor,
        pixel_gt_void_mask: torch.Tensor,
    ):
    """
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    Returns:
        Loss tensor
    """
    loss = F.cross_entropy(inputs, targets, reduction="none") # B x HW
    loss = loss.masked_fill(pixel_gt_void_mask, 0) # remove void pixels.

    num_non_zero = (loss != 0.0).to(loss).sum(-1) # B
    num_non_zero = torch.clamp(num_non_zero, min=1.0)
    loss_sum_per_sample = loss.sum(-1) # B
    return divide_no_nan(loss_sum_per_sample, num_non_zero).mean() # 1


class SetCriterion(nn.Module):
    """This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, share_final_matching,
                 pixel_insdis_temperature=1.5, pixel_insdis_sample_k=4096,
                 aux_semantic_temperature=2.0, aux_semantic_sample_k=4096):
        """Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        self.share_final_matching = share_final_matching
        self.pixel_insdis_temperature = pixel_insdis_temperature
        self.pixel_insdis_sample_k = pixel_insdis_sample_k
        self.aux_semantic_temperature = aux_semantic_temperature
        self.aux_semantic_sample_k = aux_semantic_sample_k

    def loss_labels(self, outputs, targets):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert "pred_logits" in outputs
        src_logits = outputs["pred_logits"] # B x N x C
        target_classes = targets["labels"] # B x N
        pq_loss_class_weight = targets["pq_loss_class_weight"]
        losses = {"loss_ce": focal_cross_entropy_loss(src_logits, target_classes, pq_loss_class_weight)}
        return losses
    
    def loss_masks(self, outputs, targets):
        """Compute the losses related to the masks: the focal loss and the dice loss.
        targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
        """
        src_masks = outputs["pred_masks"] # B x N x H x W
        target_masks = targets["masks"]
        pq_loss_mask_weight = targets["pq_loss_mask_weight"]
        pixel_gt_void_mask = targets["pixel_gt_void_mask"]

        src_masks = src_masks.flatten(2) # B x N x HW
        target_masks = target_masks.flatten(2) # B x N x HW
        pixel_gt_void_mask = pixel_gt_void_mask.flatten(1) # B x HW

        losses = {
            "loss_mask": softmax_ce_loss(src_masks, target_masks, pixel_gt_void_mask),
            "loss_dice": dice_loss(src_masks, target_masks, pixel_gt_void_mask, pq_loss_mask_weight),
        }

        return losses

    def loss_pixels(self, outputs, targets):
        pixel_feature = outputs["pixel_feature"]
        target_masks = targets["masks"]
        pixel_gt_void_mask = targets["pixel_gt_void_mask"]
        inverse_gt_mask_area = targets["inverse_gt_mask_area"]

        losses = {"loss_pixel_insdis": pixelwise_insdis_loss(
            pixel_feature=pixel_feature,
            gt_mask=target_masks,
            sample_temperature=self.pixel_insdis_temperature,
            sample_k=self.pixel_insdis_sample_k,
            instance_discrimination_temperature=0.3,
            pixel_gt_void_mask=pixel_gt_void_mask,
            inverse_gt_mask_area=inverse_gt_mask_area
            )}

        del target_masks
        return losses

    def loss_semantic(self, outputs, targets):
        pred_semantic_logits = outputs["aux_semantic_pred"]
        ground_truth_semantic = targets["ground_truth_semantic"]
        pixel_gt_void_mask = targets["pixel_gt_void_mask"].flatten(1)
        inverse_gt_mask_area = targets["inverse_gt_mask_area"].flatten(1)

        losses = {"loss_aux_semantic": aux_semantic_loss(
            pred_semantic_logits=pred_semantic_logits,
            ground_truth_semantic=ground_truth_semantic,
            sample_temperature=self.aux_semantic_temperature,
            sample_k=self.aux_semantic_sample_k,
            pixel_gt_void_mask=pixel_gt_void_mask,
            inverse_gt_mask_area=inverse_gt_mask_area,
            num_classes=self.num_classes
        )}
        return losses

    @torch.no_grad()
    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        # torch.full_like gives a tensor full of i in shape of src.shape
        # at each iter, i is the index, src is the src ind in shape of (N)
        # so batch_idx is concat of (0,0,...), (1,1,...), with shape (N0+N1+N2+...+Nb)
        # so if we flatten gt/pred across bathces, this gives the batch_id of each sample
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        # src_idx is src_ind concated to shape (N0+N1+N2+...+Nb)
        # it is a flattened concat of mask_id at each batch
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx


    def get_loss(self, loss, outputs, targets):
        loss_map = {
            'labels': self.loss_labels,
            'masks': self.loss_masks,
            'pixels': self.loss_pixels,
            'aux_semantic': self.loss_semantic,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        return loss_map[loss](outputs, targets)

    @torch.no_grad()
    def process_gt(self, outputs, targets, indices, matched_dice, matched_cls_prob, process_semantic=False):
        # Permute&Pad Pred&GT for loss compuation.
        # By controling process_gt, we can share the matching results for all preds.
        src_idx = self._get_src_permutation_idx(indices)

        src_masks = outputs["pred_masks"].detach() # B x N x H x W

        # Pad and permute the target_mask to B x N x H x W
        target_masks = torch.zeros_like(src_masks)
        target_masks_o = torch.cat([t["masks"][J] for t, (_, J) in zip(targets, indices)]).to(target_masks)
        target_masks[src_idx] = target_masks_o

        # Pad and permute the matched_cls_prob to B x N
        matched_cls_prob_o = torch.cat([cls_prob for cls_prob in matched_cls_prob])
        matched_cls_prob_o = torch.clamp(matched_cls_prob_o, min=self.eos_coef)
        # https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py#L1034
        # no penalty for unmatched masks.
        matched_cls_prob = torch.full(
            src_masks.shape[:2], 0, dtype=src_masks.dtype, device=src_masks.device
        ) # B x N
        matched_cls_prob[src_idx] = matched_cls_prob_o.to(matched_cls_prob)

        # pixel_gt_void_mask is used to indicate those pixels without labels.
        pixel_gt_void_mask = (target_masks.sum(1) < 1) # B x H x W
   
        # inverse_gt_mask_area is used to sample pixels.
        mask_gt_area = target_masks.sum(2).sum(2) # B x N
        pixel_gt_area = torch.einsum('bnhw,bn->bhw', target_masks, mask_gt_area) # B x H x W
        inverse_gt_mask_area = (pixel_gt_area.shape[1] * pixel_gt_area.shape[2]) / torch.clamp(pixel_gt_area, min=1.0) # B x H x W

        src_logits = outputs["pred_logits"] # B x N x C
        # Pad and permute the target_classes to B x N
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        # This serves as a padding.
        target_classes = torch.full(
            src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
        )
        # We put real GT to those corresponds to src_idx, and put void into other places.
        target_classes[src_idx] = target_classes_o

        src_masks_prob = src_masks.softmax(1)
        void_mask = pixel_gt_void_mask.to(src_masks_prob) # B x H x W
        # compute iou instead of dice for void overlapping.
        def computer_iou_score(x, y):
            # x : B x N x H x W
            # y : B x H x W
            x = x.flatten(2) # B x N x L
            y = y.flatten(1) # B x L
            intersection = torch.einsum('bnl,bl->bn', x, y) # B x N
            denominator = x.sum(-1) # B x N
            return intersection / (denominator + 1e-5) # B x N

        # Pad and permute the matched_dice to B x N
        matched_dice_o = torch.cat([dice for dice in matched_dice])
        matched_dice = computer_iou_score(src_masks_prob, void_mask) # unmatched masks use their dice with void
        matched_dice[src_idx] = matched_dice_o.to(matched_dice)
        matched_dice = torch.clamp(matched_dice, min=self.eos_coef)

        
        processed_gt = {"masks": target_masks, "labels": target_classes,
            "pq_loss_mask_weight": matched_cls_prob,
            "pq_loss_class_weight": matched_dice,
            "pixel_gt_void_mask": pixel_gt_void_mask,
            "inverse_gt_mask_area": inverse_gt_mask_area,}
    
        if process_semantic:
            # To obtain semantic gt
            ground_truth_semantic = [t["semantic_masks"] for t in targets]
            ground_truth_semantic = torch.stack(ground_truth_semantic, dim=0) # B x H x W
            # self.num_classes is set to ignore label
            ground_truth_semantic[ground_truth_semantic==-1] = self.num_classes
            processed_gt.update({"ground_truth_semantic": ground_truth_semantic})

        return processed_gt


    def forward(self, outputs, targets):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
        indices, matched_dice, matched_cls_prob = self.matcher(outputs_without_aux, targets)
        # Pad GT to the same number of prediction.
        processed_targets = self.process_gt(outputs, targets, indices, matched_dice, matched_cls_prob, process_semantic=True)
        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, processed_targets))

        if "aux_outputs" in outputs:
            for i, aux_outputs in enumerate(outputs["aux_outputs"]):
                # We share matching results across predictions.
                if not self.share_final_matching:
                    indices, matched_dice, matched_cls_prob = self.matcher(aux_outputs, targets)
                if not self.share_final_matching:
                    processed_targets = self.process_gt(aux_outputs, targets, indices, matched_dice, matched_cls_prob)
                for loss in self.losses:
                    if loss in ['aux_semantic']:
                        # Only for final output.
                        continue
                    l_dict = self.get_loss(loss, aux_outputs, processed_targets)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)
        return losses

    def __repr__(self):
        head = "Criterion " + self.__class__.__name__
        body = [
            "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
            "losses: {}".format(self.losses),
            "weight_dict: {}".format(self.weight_dict),
            "num_classes: {}".format(self.num_classes),
            "eos_coef: {}".format(self.eos_coef),
        ]
        _repr_indent = 4
        lines = [head] + [" " * _repr_indent + line for line in body]
        return "\n".join(lines)