File size: 28,184 Bytes
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b4e6b
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b4e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b4e6b
 
 
 
 
 
 
 
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b98e8d
b6396ac
 
 
4b98e8d
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b4e6b
2df50c2
a5b4e6b
 
 
2df50c2
a5b4e6b
 
 
b6396ac
a5b4e6b
 
2df50c2
 
a5b4e6b
 
 
 
 
 
 
b6396ac
 
a5b4e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
b6396ac
a5b4e6b
 
 
 
 
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Tuple

import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom

from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher


from .modeling.transformer_decoder.fcclip_transformer_decoder import MaskPooling, get_classification_logits
import os
VILD_PROMPT = [
    "a photo of a {}.",
    "This is a photo of a {}",
    "There is a {} in the scene",
    "There is the {} in the scene",
    "a photo of a {} in the scene",
    "a photo of a small {}.",
    "a photo of a medium {}.",
    "a photo of a large {}.",
    "This is a photo of a small {}.",
    "This is a photo of a medium {}.",
    "This is a photo of a large {}.",
    "There is a small {} in the scene.",
    "There is a medium {} in the scene.",
    "There is a large {} in the scene.",
]

def split_labels(x):
    res = []
    for x_ in x:
        x_ = x_.replace(', ', ',')
        x_ = x_.split(',') # there can be multiple synonyms for single class
        res.append(x_)
    return res

def fill_all_templates_ensemble(x_=''):
    res = []
    for x in x_:
        for template in VILD_PROMPT:
            res.append(template.format(x))
    return res, len(res) // len(VILD_PROMPT)

@META_ARCH_REGISTRY.register()
class FCCLIP(nn.Module):
    """
    Main class for mask classification semantic segmentation architectures.
    """

    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        criterion: nn.Module,
        num_queries: int,
        object_mask_threshold: float,
        overlap_threshold: float,
        train_metadata,
        test_metadata,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        # inference
        semantic_on: bool,
        panoptic_on: bool,
        instance_on: bool,
        test_topk_per_image: int,
        # FC-CLIP
        geometric_ensemble_alpha: float,
        geometric_ensemble_beta: float,
    ):
        """
        Args:
            backbone: a backbone module, must follow detectron2's backbone interface
            sem_seg_head: a module that predicts semantic segmentation from backbone features
            criterion: a module that defines the loss
            num_queries: int, number of queries
            object_mask_threshold: float, threshold to filter query based on classification score
                for panoptic segmentation inference
            overlap_threshold: overlap threshold used in general inference for panoptic segmentation
            metadata: dataset meta, get `thing` and `stuff` category names for panoptic
                segmentation inference
            size_divisibility: Some backbones require the input height and width to be divisible by a
                specific integer. We can use this to override such requirement.
            sem_seg_postprocess_before_inference: whether to resize the prediction back
                to original input size before semantic segmentation inference or after.
                For high-resolution dataset like Mapillary, resizing predictions before
                inference will cause OOM error.
            pixel_mean, pixel_std: list or tuple with #channels element, representing
                the per-channel mean and std to be used to normalize the input image
            semantic_on: bool, whether to output semantic segmentation prediction
            instance_on: bool, whether to output instance segmentation prediction
            panoptic_on: bool, whether to output panoptic segmentation prediction
            test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
        """
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.criterion = criterion
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.object_mask_threshold = object_mask_threshold
        self.train_metadata = train_metadata
        self.test_metadata = test_metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # additional args
        self.semantic_on = semantic_on
        self.instance_on = instance_on
        self.panoptic_on = panoptic_on
        self.test_topk_per_image = test_topk_per_image

        if not self.semantic_on:
            assert self.sem_seg_postprocess_before_inference

        # FC-CLIP args
        self.mask_pooling = MaskPooling()
        self.geometric_ensemble_alpha = geometric_ensemble_alpha
        self.geometric_ensemble_beta = geometric_ensemble_beta

        self.train_text_classifier = None
        self.test_text_classifier = None
        self.void_embedding = nn.Embedding(1, backbone.dim_latent) # use this for void

        _, self.train_num_templates, self.train_class_names = self.prepare_class_names_from_metadata(train_metadata, train_metadata)
        self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(test_metadata, train_metadata)

        self.demo_all_text_embedding_cache = {}
        # This consists of COCO, ADE20K, LVIS
        if os.path.exists("demo_all_text_embedding_cache.pth"):
            # key: str of class name, value: tensor in shape of C
            self.demo_all_text_embedding_cache = torch.load("demo_all_text_embedding_cache.pth", map_location=self.device)
            self.demo_all_text_embedding_cache = {k:v.to(self.device) for k,v in self.demo_all_text_embedding_cache.items()}


    def prepare_class_names_from_metadata(self, metadata, train_metadata):
        # get text classifier
        try:
            class_names = split_labels(metadata.stuff_classes) # it includes both thing and stuff
            train_class_names = split_labels(train_metadata.stuff_classes)
        except:
            # this could be for insseg, where only thing_classes are available
            class_names = split_labels(metadata.thing_classes)
            train_class_names = split_labels(train_metadata.thing_classes)
        train_class_names = {l for label in train_class_names for l in label}
        category_overlapping_list = []
        for test_class_names in class_names:
            is_overlapping = not set(train_class_names).isdisjoint(set(test_class_names))
            category_overlapping_list.append(is_overlapping)
        category_overlapping_mask = torch.tensor(
            category_overlapping_list, dtype=torch.long)
       
        num_templates = []
        templated_class_names = []
        for x in class_names:
            templated_classes, templated_classes_num = fill_all_templates_ensemble(x)
            templated_class_names += templated_classes
            num_templates.append(templated_classes_num) # how many templates for current classes
        class_names = templated_class_names
        #print("text for classification:", class_names)
        return category_overlapping_mask, num_templates, class_names

    def set_metadata(self, metadata):
        if set(self.test_metadata.stuff_classes) != set(metadata.stuff_classes):
            print("setting test metadata:", metadata)
            self.test_metadata = metadata
            self.category_overlapping_mask, self.test_num_templates, self.test_class_names = self.prepare_class_names_from_metadata(metadata, self.train_metadata)
            self.test_text_classifier = None
            print("text for classification:", self.test_class_names)
        return

    def get_text_classifier(self):
        if self.training:
            if self.train_text_classifier is None:
                text_classifier = []
                # this is needed to avoid oom, which may happen when num of class is large
                bs = 128
                for idx in range(0, len(self.train_class_names), bs):
                    text_classifier.append(self.backbone.get_text_classifier(self.train_class_names[idx:idx+bs], self.device).detach())
                text_classifier = torch.cat(text_classifier, dim=0)

                # average across templates and normalization.
                text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                text_classifier = text_classifier.reshape(text_classifier.shape[0]//len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
                text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                self.train_text_classifier = text_classifier
            return self.train_text_classifier, self.train_num_templates
        else:
            if self.test_text_classifier is None:
                try:
                    nontemplated_class_names = split_labels(self.test_metadata.stuff_classes) # it includes both thing and stuff 
                except:
                    # this could be for insseg, where only thing_classes are available
                    nontemplated_class_names = split_labels(self.test_metadata.thing_classes)
                print("nontemplated_class_names:", nontemplated_class_names)
                text2classifier = {}
                test_class_names = []
                uncached_class_name = []
                text_classifier = []
                # exclude those already in cache
                for class_names in nontemplated_class_names:
                    if not isinstance(class_names, list):
                        class_names = [class_names]
                    for class_name in class_names:
                        if class_name in self.demo_all_text_embedding_cache:
                            text2classifier[class_name] = self.demo_all_text_embedding_cache[class_name].to(self.device)
                        else:
                            test_class_names += fill_all_templates_ensemble([class_name])[0]
                            uncached_class_name.append(class_name)
                print("Uncached texts:", len(uncached_class_name), uncached_class_name, test_class_names)
                # this is needed to avoid oom, which may happen when num of class is large
                bs = 128
                for idx in range(0, len(test_class_names), bs):
                    text_classifier.append(self.backbone.get_text_classifier(test_class_names[idx:idx+bs], self.device).detach())

                if len(text_classifier) > 0:
                    text_classifier = torch.cat(text_classifier, dim=0)
                    # average across templates and normalization.
                    text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                    text_classifier = text_classifier.reshape(text_classifier.shape[0]//len(VILD_PROMPT), len(VILD_PROMPT), text_classifier.shape[-1]).mean(1)
                    text_classifier /= text_classifier.norm(dim=-1, keepdim=True)
                    assert text_classifier.shape[0] == len(uncached_class_name)
                    for idx in range(len(uncached_class_name)):
                        self.demo_all_text_embedding_cache[uncached_class_name[idx]] = text_classifier[idx]
                        text2classifier[uncached_class_name[idx]] = text_classifier[idx]
                    #torch.save({k:v for k, v in self.demo_all_text_embedding_cache.items()}, "demo_all_text_embedding_cache.pth")

                text_classifier = []
                for class_names in nontemplated_class_names:
                    for text in class_names:
                        text_classifier.append(text2classifier[text].to(self.device))
                text_classifier = torch.stack(text_classifier, dim=0).to(self.device)
                self.test_text_classifier = text_classifier
            return self.test_text_classifier, self.test_num_templates

    @classmethod
    def from_config(cls, cfg):
        backbone = build_backbone(cfg)
        sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())

        # Loss parameters:
        deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
        no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT

        # loss weights
        class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
        dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
        mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT

        # building criterion
        matcher = HungarianMatcher(
            cost_class=class_weight,
            cost_mask=mask_weight,
            cost_dice=dice_weight,
            num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
        )

        weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}

        if deep_supervision:
            dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
            aux_weight_dict = {}
            for i in range(dec_layers - 1):
                aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
            weight_dict.update(aux_weight_dict)

        losses = ["labels", "masks"]

        criterion = SetCriterion(
            sem_seg_head.num_classes,
            matcher=matcher,
            weight_dict=weight_dict,
            eos_coef=no_object_weight,
            losses=losses,
            num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
            oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
            importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
        )

        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "criterion": criterion,
            "num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
            "object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
            "overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
            "train_metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
            "test_metadata": MetadataCatalog.get(cfg.DATASETS.TEST[0]),
            "size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
            "sem_seg_postprocess_before_inference": (
                cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
                or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
                or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
            ),
            "pixel_mean": cfg.MODEL.PIXEL_MEAN,
            "pixel_std": cfg.MODEL.PIXEL_STD,
            # inference
            "semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
            "instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
            "panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
            "test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
            "geometric_ensemble_alpha": cfg.MODEL.FC_CLIP.GEOMETRIC_ENSEMBLE_ALPHA,
            "geometric_ensemble_beta": cfg.MODEL.FC_CLIP.GEOMETRIC_ENSEMBLE_BETA,
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:
                   * "image": Tensor, image in (C, H, W) format.
                   * "instances": per-region ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.
        Returns:
            list[dict]:
                each dict has the results for one image. The dict contains the following keys:

                * "sem_seg":
                    A Tensor that represents the
                    per-pixel segmentation prediced by the head.
                    The prediction has shape KxHxW that represents the logits of
                    each class for each pixel.
                * "panoptic_seg":
                    A tuple that represent panoptic output
                    panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
                    segments_info (list[dict]): Describe each segment in `panoptic_seg`.
                        Each dict contains keys "id", "category_id", "isthing".
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        features = self.backbone(images.tensor)
        text_classifier, num_templates = self.get_text_classifier()
        # Append void class weight
        text_classifier = torch.cat([text_classifier, F.normalize(self.void_embedding.weight, dim=-1)], dim=0)
        features['text_classifier'] = text_classifier
        features['num_templates'] = num_templates
        outputs = self.sem_seg_head(features)

        if self.training:
            # mask classification target
            if "instances" in batched_inputs[0]:
                gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
                targets = self.prepare_targets(gt_instances, images)
            else:
                targets = None

            # bipartite matching-based loss
            losses = self.criterion(outputs, targets)

            for k in list(losses.keys()):
                if k in self.criterion.weight_dict:
                    losses[k] *= self.criterion.weight_dict[k]
                else:
                    # remove this loss if not specified in `weight_dict`
                    losses.pop(k)
            return losses
        else:
            mask_cls_results = outputs["pred_logits"]
            mask_pred_results = outputs["pred_masks"]

            # We ensemble the pred logits of in-vocab and out-vocab
            clip_feature = features["clip_vis_dense"]
            mask_for_pooling = F.interpolate(mask_pred_results, size=clip_feature.shape[-2:],
                                             mode='bilinear', align_corners=False)
            pooled_clip_feature = self.mask_pooling(clip_feature, mask_for_pooling)
            pooled_clip_feature = self.backbone.visual_prediction_forward(pooled_clip_feature)
            out_vocab_cls_results = get_classification_logits(pooled_clip_feature, text_classifier, self.backbone.clip_model.logit_scale, num_templates)
            in_vocab_cls_results = mask_cls_results[..., :-1] # remove void
            out_vocab_cls_results = out_vocab_cls_results[..., :-1] # remove void

            # Reference: https://github.com/NVlabs/ODISE/blob/main/odise/modeling/meta_arch/odise.py#L1506
            out_vocab_cls_probs = out_vocab_cls_results.softmax(-1)
            in_vocab_cls_results = in_vocab_cls_results.softmax(-1)
            category_overlapping_mask = self.category_overlapping_mask.to(self.device)
            alpha = self.geometric_ensemble_alpha
            beta = self.geometric_ensemble_beta
            cls_logits_seen = (
                (in_vocab_cls_results ** (1 - alpha) * out_vocab_cls_probs**alpha).log()
                * category_overlapping_mask
            )
            cls_logits_unseen = (
                (in_vocab_cls_results ** (1 - beta) * out_vocab_cls_probs**beta).log()
                * (1 - category_overlapping_mask)
            )
            cls_results = cls_logits_seen + cls_logits_unseen

            # This is used to filtering void predictions.
            is_void_prob = F.softmax(mask_cls_results, dim=-1)[..., -1:]
            mask_cls_probs = torch.cat([
                cls_results.softmax(-1) * (1.0 - is_void_prob),
                is_void_prob], dim=-1)
            mask_cls_results = torch.log(mask_cls_probs + 1e-8)

            # upsample masks
            mask_pred_results = F.interpolate(
                mask_pred_results,
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bilinear",
                align_corners=False,
            )

            del outputs

            processed_results = []
            for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
                mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
            ):
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                processed_results.append({})

                if self.sem_seg_postprocess_before_inference:
                    mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                        mask_pred_result, image_size, height, width
                    )
                    mask_cls_result = mask_cls_result.to(mask_pred_result)

                # semantic segmentation inference
                if self.semantic_on:
                    r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
                    if not self.sem_seg_postprocess_before_inference:
                        r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
                    processed_results[-1]["sem_seg"] = r

                # panoptic segmentation inference
                if self.panoptic_on:
                    panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
                    processed_results[-1]["panoptic_seg"] = panoptic_r
                
                # instance segmentation inference
                if self.instance_on:
                    instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
                    processed_results[-1]["instances"] = instance_r

            return processed_results

    def prepare_targets(self, targets, images):
        h_pad, w_pad = images.tensor.shape[-2:]
        new_targets = []
        for targets_per_image in targets:
            # pad gt
            gt_masks = targets_per_image.gt_masks
            padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
            padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
            new_targets.append(
                {
                    "labels": targets_per_image.gt_classes,
                    "masks": padded_masks,
                }
            )
        return new_targets

    def semantic_inference(self, mask_cls, mask_pred):
        mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = mask_pred.sigmoid()
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg

    def panoptic_inference(self, mask_cls, mask_pred):
        scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
        mask_pred = mask_pred.sigmoid()
        num_classes = len(self.test_metadata.stuff_classes)
        keep = labels.ne(num_classes) & (scores > self.object_mask_threshold)
        cur_scores = scores[keep]
        cur_classes = labels[keep]
        cur_masks = mask_pred[keep]
        cur_mask_cls = mask_cls[keep]
        cur_mask_cls = cur_mask_cls[:, :-1]

        cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks

        h, w = cur_masks.shape[-2:]
        panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
        segments_info = []

        current_segment_id = 0

        if cur_masks.shape[0] == 0:
            # We didn't detect any mask :(
            return panoptic_seg, segments_info
        else:
            # take argmax
            cur_mask_ids = cur_prob_masks.argmax(0)
            stuff_memory_list = {}
            for k in range(cur_classes.shape[0]):
                pred_class = cur_classes[k].item()
                isthing = pred_class in self.test_metadata.thing_dataset_id_to_contiguous_id.values()
                mask_area = (cur_mask_ids == k).sum().item()
                original_area = (cur_masks[k] >= 0.5).sum().item()
                mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)

                if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
                    if mask_area / original_area < self.overlap_threshold:
                        continue

                    # merge stuff regions
                    if not isthing:
                        if int(pred_class) in stuff_memory_list.keys():
                            panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
                            continue
                        else:
                            stuff_memory_list[int(pred_class)] = current_segment_id + 1

                    current_segment_id += 1
                    panoptic_seg[mask] = current_segment_id

                    segments_info.append(
                        {
                            "id": current_segment_id,
                            "isthing": bool(isthing),
                            "category_id": int(pred_class),
                        }
                    )

            return panoptic_seg, segments_info

    def instance_inference(self, mask_cls, mask_pred):
        # mask_pred is already processed to have the same shape as original input
        image_size = mask_pred.shape[-2:]

        # [Q, K]
        scores = F.softmax(mask_cls, dim=-1)[:, :-1]
        # if this is panoptic segmentation
        if self.panoptic_on:
            num_classes = len(self.test_metadata.stuff_classes)
        else:
            num_classes = len(self.test_metadata.thing_classes)
        labels = torch.arange(num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
        # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
        scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
        labels_per_image = labels[topk_indices]

        topk_indices = topk_indices // num_classes
        # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
        mask_pred = mask_pred[topk_indices]

        # if this is panoptic segmentation, we only keep the "thing" classes
        if self.panoptic_on:
            keep = torch.zeros_like(scores_per_image).bool()
            for i, lab in enumerate(labels_per_image):
                keep[i] = lab in self.test_metadata.thing_dataset_id_to_contiguous_id.values()

            scores_per_image = scores_per_image[keep]
            labels_per_image = labels_per_image[keep]
            mask_pred = mask_pred[keep]

        result = Instances(image_size)
        # mask (before sigmoid)
        result.pred_masks = (mask_pred > 0).float()
        result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
        # Uncomment the following to get boxes from masks (this is slow)
        # result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()

        # calculate average mask prob
        mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
        result.scores = scores_per_image * mask_scores_per_image
        result.pred_classes = labels_per_image
        return result