Spaces:
Runtime error
Runtime error
File size: 1,853 Bytes
b6396ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import logging
import numpy as np
import os
from PIL import Image
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import load_coco_json, register_coco_instances
from detectron2.utils.file_io import PathManager
from . import openseg_classes
import copy
ADE_CATEGORIES = copy.deepcopy(openseg_classes.ADE20K_150_CATEGORIES)
ADE_CATEGORIES = [x for x in ADE_CATEGORIES if x["isthing"] == 1]
_PREDEFINED_SPLITS = {
# point annotations without masks
"openvocab_ade20k_instance_train": (
"ADEChallengeData2016/images/training",
"ADEChallengeData2016/ade20k_instance_train.json",
),
"openvocab_ade20k_instance_val": (
"ADEChallengeData2016/images/validation",
"ADEChallengeData2016/ade20k_instance_val.json",
),
}
def _get_ade_instances_meta():
thing_ids = [k["id"] for k in ADE_CATEGORIES]
assert len(thing_ids) == 100, len(thing_ids)
# Mapping from the incontiguous ADE category id to an id in [0, 99]
thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)}
thing_classes = [k["name"] for k in ADE_CATEGORIES]
ret = {
"thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
"thing_classes": thing_classes,
}
return ret
def register_all_ade20k_instance(root):
for key, (image_root, json_file) in _PREDEFINED_SPLITS.items():
# Assume pre-defined datasets live in `./datasets`.
register_coco_instances(
key,
_get_ade_instances_meta(),
os.path.join(root, json_file) if "://" not in json_file else json_file,
os.path.join(root, image_root),
)
_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_all_ade20k_instance(_root)
|