File size: 23,200 Bytes
b6396ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
import logging
import fvcore.nn.weight_init as weight_init
from typing import Optional
import numpy as np
import torch
from torch import nn, Tensor
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.layers import Conv2d
from detectron2.utils.registry import Registry


from .position_encoding import PositionEmbeddingSine


TRANSFORMER_DECODER_REGISTRY = Registry("TRANSFORMER_MODULE")
TRANSFORMER_DECODER_REGISTRY.__doc__ = """
Registry for transformer module in MaskFormer.
"""


def build_transformer_decoder(cfg, in_channels, mask_classification=True):
    """
    Build a instance embedding branch from `cfg.MODEL.INS_EMBED_HEAD.NAME`.
    """
    name = cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME
    return TRANSFORMER_DECODER_REGISTRY.get(name)(cfg, in_channels, mask_classification)


def get_classification_logits(x, text_classifier, logit_scale, num_templates=None):
    # x in shape of [B, *, C]
    # text_classifier in shape of [num_classes, C]
    # logit_scale is a learnable scalar https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/model.py#L201
    # return: [B, *, num_classes]
    x = F.normalize(x, dim=-1)
    logit_scale = torch.clamp(logit_scale.exp(), max=100)
    pred_logits = logit_scale * x @ text_classifier.T # B, *, N + 1
    # max ensembel as in OpenSeg/ODISE
    final_pred_logits = []
    cur_idx = 0
    for num_t in num_templates: 
        final_pred_logits.append(pred_logits[:, :, cur_idx: cur_idx + num_t].max(-1).values)
        cur_idx += num_t
    final_pred_logits.append(pred_logits[:, :, -1]) # the last classifier is for void
    final_pred_logits = torch.stack(final_pred_logits, dim=-1)
    return final_pred_logits

# Ref: https://github.com/NVlabs/ODISE/blob/e97b06c424c575fec9fc5368dd4b3e050d91abc4/odise/modeling/meta_arch/odise.py#L923
class MaskPooling(nn.Module):
    def __init__(
        self,
    ):
        super().__init__()

    def forward(self, x, mask):
        """
        Args:
            x: [B, C, H, W]
            mask: [B, Q, H, W]
        """
        if not x.shape[-2:] == mask.shape[-2:]:
            # reshape mask to x
            mask = F.interpolate(mask, size=x.shape[-2:], mode='bilinear', align_corners=False)
        with torch.no_grad():
            mask = mask.detach()
            mask = (mask > 0).to(mask.dtype)
            denorm = mask.sum(dim=(-1, -2), keepdim=True) + 1e-8

        mask_pooled_x = torch.einsum(
            "bchw,bqhw->bqc",
            x,
            mask / denorm,
        )
        return mask_pooled_x

class SelfAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt,
                     tgt_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)

        return tgt

    def forward_pre(self, tgt,
                    tgt_mask: Optional[Tensor] = None,
                    tgt_key_padding_mask: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        
        return tgt

    def forward(self, tgt,
                tgt_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, tgt_mask,
                                    tgt_key_padding_mask, query_pos)
        return self.forward_post(tgt, tgt_mask,
                                 tgt_key_padding_mask, query_pos)


class CrossAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory,
                     memory_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        
        return tgt

    def forward_pre(self, tgt, memory,
                    memory_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)

        return tgt

    def forward(self, tgt, memory,
                memory_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, memory_mask,
                                    memory_key_padding_mask, pos, query_pos)
        return self.forward_post(tgt, memory, memory_mask,
                                 memory_key_padding_mask, pos, query_pos)


class kMaXCrossAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.nhead = nhead
        self.v_proj = nn.Linear(d_model, d_model)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory,
                     memory_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        # memory mask is in shape [B*num_heads, Q, HW]
        tgt2 = self.v_proj(memory) # HW x C
        clustering_result = memory_mask.view(tgt.shape[0], self.nhead, memory_mask.shape[-1])[:, 0] # [B, Q, HW]


        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        
        return tgt

    def forward_pre(self, tgt, memory,
                    memory_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)

        return tgt

    def forward(self, tgt, memory,
                memory_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, memory_mask,
                                    memory_key_padding_mask, pos, query_pos)
        return self.forward_post(tgt, memory, memory_mask,
                                 memory_key_padding_mask, pos, query_pos)

class FFNLayer(nn.Module):

    def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm = nn.LayerNorm(d_model)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt):
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        return tgt

    def forward_pre(self, tgt):
        tgt2 = self.norm(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout(tgt2)
        return tgt

    def forward(self, tgt):
        if self.normalize_before:
            return self.forward_pre(tgt)
        return self.forward_post(tgt)


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


@TRANSFORMER_DECODER_REGISTRY.register()
class MultiScaleMaskedTransformerDecoder(nn.Module):

    @configurable
    def __init__(
        self,
        in_channels,
        mask_classification=True,
        *,
        num_classes: int,
        hidden_dim: int,
        num_queries: int,
        nheads: int,
        dim_feedforward: int,
        dec_layers: int,
        pre_norm: bool,
        mask_dim: int,
        enforce_input_project: bool,
        clip_embedding_dim: int
    ):
        """
        NOTE: this interface is experimental.
        Args:
            in_channels: channels of the input features
            mask_classification: whether to add mask classifier or not
            num_classes: number of classes
            hidden_dim: Transformer feature dimension
            num_queries: number of queries
            nheads: number of heads
            dim_feedforward: feature dimension in feedforward network
            enc_layers: number of Transformer encoder layers
            dec_layers: number of Transformer decoder layers
            pre_norm: whether to use pre-LayerNorm or not
            mask_dim: mask feature dimension
            enforce_input_project: add input project 1x1 conv even if input
                channels and hidden dim is identical
        """
        super().__init__()

        assert mask_classification, "Only support mask classification model"
        self.mask_classification = mask_classification

        # positional encoding
        N_steps = hidden_dim // 2
        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
        
        # define Transformer decoder here
        self.num_heads = nheads
        self.num_layers = dec_layers
        self.transformer_self_attention_layers = nn.ModuleList()
        self.transformer_cross_attention_layers = nn.ModuleList()
        self.transformer_ffn_layers = nn.ModuleList()

        for _ in range(self.num_layers):
            self.transformer_self_attention_layers.append(
                SelfAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

            self.transformer_cross_attention_layers.append(
                CrossAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

            self.transformer_ffn_layers.append(
                FFNLayer(
                    d_model=hidden_dim,
                    dim_feedforward=dim_feedforward,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

        self.decoder_norm = nn.LayerNorm(hidden_dim)

        self.num_queries = num_queries
        # learnable query features
        self.query_feat = nn.Embedding(num_queries, hidden_dim)
        # learnable query p.e.
        self.query_embed = nn.Embedding(num_queries, hidden_dim)

        # level embedding (we always use 3 scales)
        self.num_feature_levels = 3
        self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
        self.input_proj = nn.ModuleList()
        for _ in range(self.num_feature_levels):
            if in_channels != hidden_dim or enforce_input_project:
                self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
                weight_init.c2_xavier_fill(self.input_proj[-1])
            else:
                self.input_proj.append(nn.Sequential())

        # output FFNs
        # if self.mask_classification:
        #     self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
        self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)

        # FC-CLIP
        self.mask_pooling = MaskPooling()
        self._mask_pooling_proj = nn.Sequential(
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, hidden_dim))
        self.class_embed = MLP(hidden_dim, hidden_dim, clip_embedding_dim, 3)
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

    @classmethod
    def from_config(cls, cfg, in_channels, mask_classification):
        ret = {}
        ret["in_channels"] = in_channels
        ret["mask_classification"] = mask_classification
        
        ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
        ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
        ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
        # Transformer parameters:
        ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
        ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD

        # NOTE: because we add learnable query features which requires supervision,
        # we add minus 1 to decoder layers to be consistent with our loss
        # implementation: that is, number of auxiliary losses is always
        # equal to number of decoder layers. With learnable query features, the number of
        # auxiliary losses equals number of decoders plus 1.
        assert cfg.MODEL.MASK_FORMER.DEC_LAYERS >= 1
        ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS - 1
        ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
        ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ

        ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
        ret["clip_embedding_dim"] = cfg.MODEL.FC_CLIP.EMBED_DIM
        return ret

    def forward(self, x, mask_features, mask = None, text_classifier=None, num_templates=None):
        # x is a list of multi-scale feature
        assert len(x) == self.num_feature_levels
        src = []
        pos = []
        size_list = []

        # disable mask, it does not affect performance
        del mask

        for i in range(self.num_feature_levels):
            size_list.append(x[i].shape[-2:])
            pos.append(self.pe_layer(x[i], None).flatten(2))
            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])

            # flatten NxCxHxW to HWxNxC
            pos[-1] = pos[-1].permute(2, 0, 1)
            src[-1] = src[-1].permute(2, 0, 1)

        _, bs, _ = src[0].shape

        # QxNxC
        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)

        predictions_class = []
        predictions_mask = []

        # prediction heads on learnable query features
        outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0],
                                                                               text_classifier=text_classifier, num_templates=num_templates)
        predictions_class.append(outputs_class)
        predictions_mask.append(outputs_mask)

        for i in range(self.num_layers):
            level_index = i % self.num_feature_levels
            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
            # attention: cross-attention first
            output = self.transformer_cross_attention_layers[i](
                output, src[level_index],
                memory_mask=attn_mask,
                memory_key_padding_mask=None,  # here we do not apply masking on padded region
                pos=pos[level_index], query_pos=query_embed
            )

            output = self.transformer_self_attention_layers[i](
                output, tgt_mask=None,
                tgt_key_padding_mask=None,
                query_pos=query_embed
            )
            
            # FFN
            output = self.transformer_ffn_layers[i](
                output
            )

            outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels],
                                                                                   text_classifier=text_classifier, num_templates=num_templates)
            predictions_class.append(outputs_class)
            predictions_mask.append(outputs_mask)

        assert len(predictions_class) == self.num_layers + 1

        out = {
            'pred_logits': predictions_class[-1],
            'pred_masks': predictions_mask[-1],
            'aux_outputs': self._set_aux_loss(
                predictions_class if self.mask_classification else None, predictions_mask
            )
        }
        return out

    def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, text_classifier, num_templates):
        decoder_output = self.decoder_norm(output)
        decoder_output = decoder_output.transpose(0, 1)
        mask_embed = self.mask_embed(decoder_output)
        outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)

        # fcclip head
        maskpool_embeddings = self.mask_pooling(x=mask_features, mask=outputs_mask) # [B, Q, C]
        maskpool_embeddings = self._mask_pooling_proj(maskpool_embeddings)
        class_embed = self.class_embed(maskpool_embeddings + decoder_output)
        outputs_class = get_classification_logits(class_embed, text_classifier, self.logit_scale, num_templates)

        # NOTE: prediction is of higher-resolution
        # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
        attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
        # must use bool type
        # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
        attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
        attn_mask = attn_mask.detach()

        return outputs_class, outputs_mask, attn_mask

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_seg_masks):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        if self.mask_classification:
            return [
                {"pred_logits": a, "pred_masks": b}
                for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
            ]
        else:
            return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]