Spaces:
Sleeping
Sleeping
File size: 2,945 Bytes
4b68381 c318f99 a8d856c 4b68381 17249dc df022b3 3910b68 df022b3 3910b68 df022b3 3910b68 df022b3 3910b68 df022b3 a268f6c 3910b68 a8d856c cfc693b 3910b68 c318f99 4b68381 a8d856c da0d4b5 4b68381 098ca40 ad5d544 098ca40 b654e25 ad5d544 b654e25 ad5d544 b654e25 ad5d544 098ca40 b654e25 ad5d544 b654e25 098ca40 a2fbaf9 d283271 a2fbaf9 9f3b801 d283271 9f3b801 a2fbaf9 ad5d544 a2fbaf9 098ca40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import streamlit as st
import pandas as pd
import numpy as np
df = pd.read_csv('last_results.csv')
image1 = 'images/rs_pmpa.PNG'
title_html = """
<style>
@font-face {
font-family: 'Quicksand';
src: url('font/Quicksand-VariableFont_wght.ttf') format('truetype');
}
body {
font-family: 'Quicksand', sans-serif;
}
.custom-title {
color: darkgreen;
font-size: 30px;
font-weight: bold;
}
</style>
<span class='custom-title'>PREVISÕES DE RECEITAS</span>
"""
# Set a fixed width for the sidebar
st.markdown(
"""
<style>
.sidebar .sidebar-content {
width: 300px;
}
</style>
""",
unsafe_allow_html=True
)
with st.sidebar:
st.image(image1, use_column_width=True)
st.markdown(title_html, unsafe_allow_html=True)
selected_instituicao = st.selectbox('Seleciona Instituição', df['Instituição'].unique())
selected_conta = st.selectbox('Seleciona Conta', df['Conta'].unique())
# Filter the DataFrame based on selected values
filtered_df = df[(df['Instituição'] == selected_instituicao) & (df['Conta'] == selected_conta)]
# Set custom width for columns
col1_width = 600
col2_width = 800
col1, col2 = st.columns([col1_width, col2_width])
# Display the Forecasts values in the first column
col1.header('Valores previstos')
if not filtered_df.empty:
data_string = filtered_df['Forecasts'].iloc[0]
# Split the string into lines
lines = data_string.split('\n')
# Iterate through the lines and extract the values
for line in lines[:-2]:
period, value = line.split()
num_float = float(value)
monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator
col1.write(f"Período {period}: {monetary_value}")
else:
col1.warning('No data available for the selected filters.')
# Display the Forecasts values as line plots in the second column
col2.header('Gráfico com previsões')
if not filtered_df.empty:
data_string = filtered_df['Forecasts'].iloc[0]
# Create a list to store data for each period
data = []
# Split the string into lines
lines = data_string.split('\n')
# Iterate through the lines and extract the values
for line in lines[:-2]:
period, value = line.split()
num_float = float(value)
monetary_value = f'R$ {num_float:,.2f}' # Adding commas for thousands separator
data.append({'Period': int(period), 'Monetary Value': num_float})
# Create a DataFrame from the list
chart_data = pd.DataFrame(data)
# Sort the DataFrame by 'Period'
chart_data = chart_data.sort_values(by='Period')
# Display line chart with "period" on X-axis and "Monetary Value" on Y-axis
col2.line_chart(chart_data.set_index('Period'))
else:
col2.warning('No data available for the selected filters.')
|